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Joseph 8. Kadane 

Suppose that two files are given with some overlapping varia­
bles and some variables unique to each of the two files. N otaition­
ally, let X represent the common variables, Y, the variables 
unique to the first file, and Z, the variables unique to the second 
file. Thus the basic data consist of a sample of pairs (X, Y) and a 
sample of pairs (X,Z). 

Merging of such microdata files may occur in two contexts. In 
the first, the files are known to consist of the same objects or 
J>ersons, although their identities may be obscured by measure­
ment errors in the common variables X. In the other case, the 
two files are random samples from the same population, but only 
accidentally will the same object or person be on both lists. 

To want to merge data files in the first context is a very natural 
impulse. A merged file permits statements about ( Y,Z) cross­
classifications that are unavailable without merging. If the meas­
urement errors in the variables X are low (for i!lstance, if X 
includes accurate social security numbers), the merging can be 
very accurate, and the meaning of an item in a merged file is 
clear. It represents the (X,Y,Z) information on the object or 
Person in question. 

Merging data files in the second context requires greater cau­
tion. Again, facts are sought about ( Y,Z) cross-classifications, 
but the items in the merged file have no natural meaning. The in­
formation on the Z variables for persons in the first file and on 
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the Y variables for persons in the second file are missmg. A 
mechanical method of merging cain be seductive in this context 
because it will produce a file of records with X,Y, and Z entries 
inviting treatment as if they refer to the same persons. Yet it is 
clear that information cannot be created by the merging process 
where none existed before. Great care must be exercised in the 
second context. 

One important method, reported by Okner (1972a), sets up 
"equivalence classes" of X's and makes a random assignment of 
an (X,Y) with an (X,Z) among "equivalent" (X,Z) 's that achieve 
a minimum closeness score. Sims (1972a, 1972b) stresses the need 
for a theory of mat.ching and criticizes the Okner procedure for 
making the implicit assumption that Y and Z, given X, are in­
dependent. Peck (1972) defends the assumption, while Okner 
(1972b) discusses the validity of the assumption in various cases. 
Budd (1972) compares Okner's procedure to one then being used 
in the Commerce Department. 

A seoond round of discussion-Okner ( 197 4) , Ruggles and 
Ruggles (1974), and Alter (1974)-shows some improvements 
in method but a continuing concentration on equivalence classes. 
Sims (1974) again stresses his belief that the methods proposed 
will not perform well in sparse X-regions. 

The first section of this report considers the case in which the 
lists are known to consist of the same objects or persons, and the 
second seotion takes up the case in which the lists are unrelated 
random samples from the same population. Although the final 
section, "Why Match?", is obviously speculative, that term really 
describes all of the work in this paper. 

Files Consist of the Same Objects or Persons 

A Statistical Model 

We assume that originally there were true triples (Xi,Yi,Zi) 
that had a normal distribution with means (µx,µ.y,µ.z) and some 
covariance matrix. These were broken into two samples, (Xi, Yi) 
and (Xi,Zi), and then independent normal measurement error 
(£~,£~) was added. Let 

X~=X.+£~ 
1 't 't 
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and 

X~=Xi+£~, 

where (£~ ,£7 ) has a normal distribution with zero mean. Suppose, 
1 i 

also, (~ has covariance matrix nu and £2. has covariance matrix 
' ' 

f222, and that (~ and £
2

. have covariance matrix n 1 2 . Then we ob-
' ' serve a permutation of the paired observations (X\Y.) and 

(X~,Zi). I t 

There are two ways in which the assumed joint normality of 
X,Y, and Z is restrictive. First, some of our data is binary or 
integer-valued. Second, this implies that all the regressions are 
linear, which is not likely to be the case, as pointed out by Sims 
(1972a, 1972b, 1974). One way around that problem might be to 
assume joint normality region-by-region in the X space. This 
thought is not pursued further here. 

Let T . = (X~,Y.) and U. = (X~,Z.) be vectors of length k and 
I t ' t t 1 

l respectively, where without loss of generality we take kLZ. 
Also without loss of generality, take µx=O, µr=O, µ.z=O. The 
covariance matrix of T and U can be written as 

Let 

l-·{~:: : ~::J 
so that, in particular, we have 

c - (l -l ~- 1l )-1 l ~-l 
12 - 11 12 22 21 12 22 • 

Note that all these covariances can be estimated easily except 
lyz and ~xx+ Du. Treatment of them is deferred. 

Now suppose that v 11 ••• , Vn is the random permutation of 
Ti, ... , Tn which is observed, and w 11 ••• , Wn is the random 
permutation of U 1, ••• , Un which is observed. Let cf>= [ cp ( 1) , . . . , 
cp (n)] be a permutation of the integers 1, ... , n. 

According to DeGroot and Goel (1976), the likelihood function 
of q, is 

L(-") =exp(-1A2tv'.C w . )· 
't' t=J 1 12 <J>( t) 
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Th us the maxim um likelihood c/> minimizes 

n 

C (c/>) = ~ v;c 12w <P<il° 

Let 

Pi; =v{C12W;. 

Then minimizing C ( c/>) is equivalent to minimizing 

C="2.Pi;aij, 

subject to the conditions 

and 

"2.ai;= 1, 
j 

ai;=O or 1, 

which is a linear assignment problem (Degroot & Goel, 1976). 
There may be cases in which v i and W; occur several times in 

the files and consequently are recorded together. In general, sup­
pose that vi occurs qi times (i= 1, ... , n) and w i occurs Y; times 
(j = 1, ... , m), where we assume 

tqi= f w;. 
i=,1 j=l 

Then a simple transformation of C ( c/>) yields the minimization of 

subject to the conditions 

and 

l ai; =Y; for j=l, ... , m, 
i 

~ ai;=qi for i=l, ... , n, 
j 

ai; =non-negative integers. 

This minimization is in the form of a transportation problem. 
The matrix C12 appears to be a natural choice of a distance func­
tion in this context. 

Information About lrn 

One of the difficulties of this method is that it requires knowl­
edge of lyz. There are several possible sources of such informa-
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ti on. First, from a coarse but perfectly matched sample, certain 
elements of Irz may be kn:own. If so, surely this information 
should be used. Second, the assumption may be made, as is cus­
tomary in the literature on matching, that Y and Z are condi­
tionally independent given the X's. That is, 

f < Y,z I xx ,x2) = t <YI x1 ,x2) t < z I x1 ,x2) . 

The covariance matrix of ( Y,ZjX1,X2
) is (Anderson, 1958, pp. 

28, 29) 

(
I1T ~rz)-[I1·x1 ~Yx:J (Ix1

x
1 ~x1x2 )- 1 

[ ~x1 r Ix1z]. 
Izr ~zz Izx1 ~zx2 ~x2x1-Ix2x~ ~x2r Ix2z 

Conditional independence occurs iff the upper-right partitioned 
submatrix is zero, i.e., iff 

1 ., (~x1x1 Irx2

)-

1 (Ix1z)--o Im- (~1·x In-) ~~2x1 """'. lx2x2 Ix 2z · 

Thus this assumption gives a condition that uniquely defines lyz 
in terms of the other l's. Some simplification of this answer is 
Possible. Using 

we have 

Then 

S) (~xz) 
V lxz 

~rxS+~rxV) (lxz) 
lxz 

= lrxRlxz + ~YXS' ~xz + lrxSixz + ~rx Vl_yz 

=lrx(R+S'+S+ V)~.rn-

A well-known fact about inverses of partitioned matrices (Rao, 
1965, p. 29) is 

[
A BJ-1 [A-1+F E- 1F' -FE- 1

] 

B' D = -E-1F' E- 1 ' 

where 
E=D-B'A- 1B and F=A- 1B. 
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Then 

R+S'+S+ V=A- 1 +FE- 1F'-FE- 1 -E- 1F' +E- 1 

=A- 1 + (l-F)E- 1 (1-F)' 
=A- 1 + (l-A- 1B)E- 1 (1-B'A- 1

) 

=A- 1 (A+ (A-B) (D-B'A- 1B)- 1 (A-B'))A- 1
• 

Thus, in our case, 

lyz=~yxl- 1 (lx1x1 + (~x1x1 -lx1x2 ) (lx2x2 -lx2x1 l- 1 lx1x2
)-

1 

x1x1 x1x1 

· (~x1.x1 -lx2x1)~- 1 lxz· 
x1x1 

Thus ~yz is given by this equation as a function of lyx, lxz, 
~x1x1, lx2x2

, and lx2x1
• All of these can be estimated directly except 

the last, ~x2x1 =lxx+012. 

Estimation of l 2 1 = lxx + !212 
xx 

There are really two topics in this section. First I consider the 
elicitation of the measurement error process . variance-covariance 
matrix n. Then I consider how to use that with other information 
to obtain lx2x1

• 

In the elicitation of n, I must first emphasize what it is not. It 
does not refer to the levels of the common variables X. That is, 
we are dealing only with the spread in measured X's caused by the 
measurement process. Second, it does not refer to any systematic 
bias there may be in the measurement error process, but refers 
only to variability around what would be expected, taking into 
account both the level of the X variable and the measurement 
bias, if any. 

Begin, then, with the diagonal elements of n, which are vari­
ances. Each variance refers to a specific measurement error vari­
able, that is, to a specific X-variable and the associated source (one 
of the two). Choose any value for the true underlying X variable, 
for instance x. Write down what you think the measurement bias 
b is. (This must be independent of the value you gave for the X­
variable, x. While this is not exactly the case, take for b a typical 
value). Not everyone with this true value x will have a measured 
value x + b. Write down the number y such that only 33.3 percent 
of such people will lie below y and 66.7 percent, above. Write down 
the number w such that 66.7 percent will lie below w and 33.3 per­
cent, above. These numbers should line up so that y<x+b<w. 
There are now two measures for the standard deviation: 2.17 
(w-x-b) and 2.17(x+b-y). These values should be close. The 
variance is then the square of the standard deviation. This vari-
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ance should not, according to the model, depend on x, so try it for 
a number of x's and hope that the resul.ts are close. If they are, 
take the median as the best value. If they are not, the model is not 
a good representation of reality. 

Now we turn to the off-diagonal elements of n, which have to do 
with the relationship between two variables. Suppose that those 
variables are A and B. Then the work above defines for us the 
following: xA,b.-t,<TA,wA, and YA, and similarly, xB,bB,<TB,wB and Yn· 
We now are trying to capture the extent to which A and B affect 
one another. The characteristic we focus on is the proportion p of 
times a measurement error on A is smaller than w A and, simul­
taneously, a measurement error on Bis smaller than wB. If A and 
B have nothing to do with one another, this proportion would be 
2/ 3 x 2/ 3 = 4/ 9 = .44, slightly under 50 percent. However, if A and 
Bare related to one another, this proportion p may vary from A4. 
Write down the number you think is correct, and then convert it 
into a correlation between A and B using table 1. 

This yields a p.rn for each pair of variables A and B. The proper 
element for n is then the covariance of A and B, which is <J:<ilfBp.rn· 

Not every matrix formed in this way is positive definite, as a 
covariance matrix must be. Hence, additional checks must be made 
to ensure that the covariance matrix is positive definite. One con­
venient way to achieve this is to augment none row and column at 
a time, making use of the following simple fact: 

If A is positive definite, then 

( :, ~) 
is positive definite, iff c-b' A-1 b>O. The proof is simple (see Kadane 
et al., 1977.) 

In this way, every element of n can be elicited. Now the sample 
also has some information about n, which can be used as a check 
on the process. The variance-covariance matrix o.f X 1 is lx1x 1 = 
lxx+nu and of X 2, lx2x 2 =lxx+U22· This gives two independent es­
timates for lxx, namely lx2x2 -n2'.! and lx1x1 -n11. These should be 
very close. I suggest rechecking the work if they are not. If they 
are, then an estimate for lxx is at hand. Finally we obtain 
~x2x1 = lxx + n12, for we now have estimates of both of the latter. 

TABLE 1.-Relation between p and p 

p .33 .35 .37 .40 .42 .44 .46 .48 .50 .54 .59 
0 -.9 -.7 -.5 -.3 -.1 0 .1 .3 .5 .7 .9 

Source: National Bureau of Standards ( 1959). 
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Some Concluding Remarks About This Case 

The case in which the files are known to consist of the same ob­
jects or persons is not well understood. Recently DeGroot and Goel 
(1975) obtained the astonishing result that such matched sam­
ples contain information about lrz. Their results suggest that 
there may not be a lot of information, and we do not know whether 
the amount of information in some relevant sense increases or 
decreases (or stays constant) with n. In particular, we do not 
know if a consistent estimate of lyz can be found in this case, al­
though this writer's intuition is that it cannot. 

Another case, one in which the lists may or may not contain the 
same individuals, is called record linkage. A few important papers 
in record linkage have been written by DuBois (1969), Fellegi and 
Sunter (1969), Newcombe and Kennedy (1962), and Tepping 
(1968). 

Matching When the Files Are 
Random Samples from the Same Population 

We assume here that there were true triples (Xk,Y1.:,Zd that had 
a normal distribution with ~eans (µ.x,µ.r,µ.z) and some covariance 
matrix. Suppose that in some of these triples the X coordinates 
were lost, yielding a sample (X;,Y;),(j=l, ... ,m), and that for 
others the Y coordinates were lost, yielding a sample (Xi,Z i), 
( i = 1, ... ,n). The parameters µ.x, µ.y, µ.z, lxx, lxr, ~xz, lyy, and lz.r. 
can all be estimated consistently, and so we will take them as 
known. However, the covariance matrix of Y and Z, lni:, cannot 
be consistently estimated from such data. 

In fact, in the domain in which lyz is such that the matrix 

(
lYY ~yz) 
lzy ~zz 

is positive semidefinite, nothing is learned from the data about l1·z. 
In Bayesian terms, whatever our prior on lyz was, the posterior 
distribution will be the same (see Kadane, 1975 for other examples 
of this). 

Hence we cannot hope to make realistic progress on this problem 
without a prior probability distribution on lyz. Our intention is to 
trace through the analysis using a pai;-ticular value for lyz, for the 
purpose of obtaining results that would ultimately yield the ex­
pected value of some quantity-for instance, the expected amount 
of taxes a particular kind of tax sche~ule would raise. The taxes 
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raised would then be a random variable, where the uncertainty 
would arise from the uncertainty about lyz. Hence we may assume 
that the distribution of lyz is known, and we may take values of 
lyz from the distribution, weighting the final results with the 
probability of that particular value of lyz. We proceed, then, with 
a value for lrz sampled in this way. 

A natural first thing to do is to estimate the missing values, and 
the obvious way to do that is by the conditional expectation: 

(
lxx lxr)-1 ( X;-µx) 

E(Z; IXhY;) =µz+ (lzx lzr) lyx ln Y;-µ
1
• • 

Let 
lRB•T = lRs - lRrl-;:;lTB 

for any matrices R, S, and T. 
Then 

E(Z·I X · Y ·) = +(l l >( li~.y -l;~lXYl;;.x)(X;-µx) 
1 n 1 µz zx zy _ ...... _ 1 ...... ~-i ...... _ 1 y .- , 

_..yy_..YX6jXX•Y _..YY•X 1 µi 

=µz+lzx•1·li~.y (X;-µ.x) +lzY•xl;;.x (Y;-µr). 

Similarly, we may predict missing Yi with its conditional expec­
tation 

E (YijX,,Z,) = µ.y+lyx•zli~.z (Xi-µx) + lyz•xl;;.x (Zi- µ.z) • 

Then the joint distribution of (X;,Y;,Z;) is normal with mean 
vector (µ.x,µ.y,µz) and covariance matrix 

S1 =[~:; ~;; ~t], 
T1 T2 Ts 

where 

Ti= lzx.Yli~.yl x.~ +lzy.xl;;.xlyx' 

T2 = lzx.1·l _;-;.rlxr +l;r,1 ·.·xl;1~.xln-' 
and 

T,= lzx.Yl;~.ylxxl;~.Ylxz.1· +lzr.xl;;.x~n-~;;.xlrz.x 
+ lzx.rl;~. YlXYl;I~.xlyz.x + lzy .xl;1~.x lyxl;~. ylxz. r' 

This is a singular distribution, of course, since Z; is a linear func-
tion of X; and Y;. ,.. 

Similarly, the joint distribution of (Xi,Y;,Z1) is normal with 
mean vector (µ.x,µ.y,µz) and covariapce matrix 

[

lxx T',. lxz] 
_ T T T' S2 - • 6 s , 

lzx T" lzz 



168 COMPENDIUM OF TAX RESEARCH 

where 

T4 = lYx.z~;~.zlxx + l1·zx~1-:;!-.xln-, 

T 5 = ~Yx.zlil.zlxz + ~rz.xl;z1.x lzz' 

and 

Ts= ~rx.zlil.zlxx~~~.zlxr.z +lrz.x~ --;;.xl zz l;;.x~ zr.x 

+ lrx.zl;;.r~ xzl ;z
1
.x lzr.x + lrz .. Yl;z

1

.x~zx~.i~.zl xr . .r,' 

which again is a singular distribution. Now a natural impulse is 
to pool these two samples wi= (xi,Y;,Z;), (j = 1, ... , m) and vi 
= (x;,Yi,zi), (i=l, ... , n). However the covariance matrices St 
and 82 are not the same, and all such data would lie on two hyper­
planes in (X,Y,Z) space. Another impulse is to match the data. 
Suppose now that m=n, so that simple matching has some hope 
of making sense. 

Observe that w;-vi has a normal distribution with mean of 
zero and covariance matrix 81 + 82, which is nonsingular. 

Hence, using the Mahalanobis distance, we may define the dis­
tance from w; to V;, to be dij, where 

di;= (w;-vi)' (81+82)- 1 (w;-vi). 

Thus a match would minimize 

i,j 

over choices of ai; subject to the conditions 

lai;=l, 

~a;,;= 1, 

and 
ai;=O or 1, 

which again is a linear assignment problem. In the case in which 
the observations have weights, we relax the condition n = m and 
suppose vi has weight qi (i= 1, ... , n) and W; has weight yj 
(j = 1, ... ,m). The condition n = m is replaced by the condition 
lqi = lY;· Then the national generalization is to minimize · 

~-~;<L;,; ,,, 
over choices of ai1 subject to the conditions 

lai1=Yi1 
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and 

ai;::::::,,,.O, 

which is a transportation problem. 
An interesting alternative to the matrix 8 1 + S~ to use in the 

Mahalanobis distance is the matrix 

0 
0 
0 

This alternative avoids "bias" that might be introduced by 
paired Y; and Zi, at the cost of not using some of the available 
information. I regard the relative benefits of these two methods 
as an open question. 

Once the merging is complete, suppose-with slight abuse of 
notation-that W j and vi have been matched. Then it might be 
natural to take ( X;,Y;,zJ and (xi ,Zj,yd as simulations of the under­
lying distributions. 

Now the expected taxes can be computed. Again I stress that 
this is conditional on a value of lrz. Many such matchings and 
averagings should be done, to explore the sensitivity of the results 
to l yz. 

Another aspect of this problem that is not well understood is 
the relation of matching to the prior reduction of the files (Turner 
& Gilliam, 1975). Perhaps the two processes can be combined into 
one, or mutually rationalized. 

Why Match? 

At first, matching seems to be a peculiar way to treat data. If 
l 1·z were known in either framework, the complete joint distri­
bution of the data would be consistently estimated, and any de­
vised probabilities or expectations could in principle be calcu­
lated from that estimated jointly normal distribution or, if nec­
essary, simulated on a computer. This approach is less than satis­
factory because the variables are in truth not normally distrib­
uted. Hence we use the matched sample as if it were a sample 
from the true distribution and estimate, for instance, the ex­
pected value of some tax variable as if by simulation. The nor­
mality assumption is used to derive the matching methodology 
but need not be relied on for the rest of the estimation. 
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The soundness of this approach is very difficult to assess, and 
that question will not be settled in this paper. It is clear that a 
matched sample cannot be treated uncritically as if it were a 
joint sample that had never been split nor had missing values. 
Thus the question is not the quality of the match itself, but rather 
the correct use and interpretation of statistics derived from the 
matched sample. Our understanding of this question is in its in­
fancy. 
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COMMENT 

Christopher A. Sims, University of Minnesota 

Ka4ane's paper . presents useful thoughts on the problem of 
matching heavily overlapping samples when the objective is to 
obtain exact matches and the resulting sample is not synthetic. I 
will make no further comment on that first section of the paper. 
When the paper turns to the problem of creating synthetic data 
files, however, I find it less convincing. In my opinion, the pro­
cedure suggested in the paper is likely not to be an improvement 
over the "equivalence class" procedures used by Okner and others, 
whom Kadane cites. My own view is that the purposes for which 
synthetic data files are currently being created would be better 
and more cheaply served without actual creation of synthetic 
files. While I have suggested as much in print before, I will try 
to be more specific here about a practical alternative to matching, 
before going on to criticize the meth:od Kadane proposes and to 
suggest some sensitivity tests that might be done to check exist­
ing synthetic files. 

My impression is that the main use of synthetic files arises as 
follows. We have, for example, a proposed modification of the in­
come tax law. A vector o.f variables V determines the taxes, an in­
dividual owes under the new version of the tax law according to a 
(possibly very complicated) function g (V). If we knew Vi for 
every individual i in the United States and had a lot of computer 
time, we could compute the sum of g (Vi) over all individuals and 
compute total income tax revenue under the new law. This sum 
can be written as 

N f g ( V) dF ( V) , (1) 

where F ( V) is the population cumulative distribution function 
( cdf) of V, and N is the total population. If, instead, we had a 
stratified random sample from the population, we might estimate 
this integral as a weighted sum of g (Vi) over our sample, with 
the weights determined by our sampling scheme. This weighted 
sum can be written as 

N f g (V) dF8 (V), 

where F 8 ( V) is what is known as the "sample cdf." In effect, we 
use the sample cdf a:s an estimator of the population cdf. The 
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sample cdf is a respectable estimator of th,e population cdf, and 
there are formal proofs that it has various good properties under 
certain circumstances. 1 

An Alternative to Matching 

The desire to creat.e a synthetic sample arises when V has three 
components, V = (X,Y,Z), and we have two separate random sam­
ples from the population, with only X appearing in both samples, 
while Y appears in the first only and Z appears in the second 
only. To use an estimator of F tllat we can handle in the same 
way as Fs we must somehow make one sample out of the two 
samples. Since the two samples contain no information about the 
joint distribution of Y and Z conditional on X, it has been usual 
practice to form this synthetic sample in a way that will give 
good results, on the assumption that Y and Z are independent of 
each other conditional on X. But matching, on these assumptions, 
is not necessary. 

With the conditional independence assumption, we can write 

dF(V) =dFXY(V)dFXZ(V)/dFX(V), (2) 

where FxJ:· is the marginal cdf 'of X and Y (and hence dFXY (V) 
does not depend on Z) , and the other terms on the righrt-hand side 
are analogously defined marginal cdf's. The two separate samples 
are adequate to estimate all the terms on the right-hand side of 
equation (2) by any of a number of methods. One method that 
seems natural in this problem is to construct a histogram.2 One 
forms a grid in V space and estimates a joint density function by 
counting the number (or weighted number) of sample points in 
each cell. Let j index X-categories, k index ¥-categories, and m 
index Z-categories. Let n;km be the sum of weights of sample points 
in the f lcm'th cell, and use dot notation according to n;k · = ~n;kln 

m 

to denote marginal distributions. Finally, let V;km refer to the 
value of V at the center of cell jkm. Now the estimator for the 
integral in expression ( 1) that I am suggesting is 

1 It is not likely to be so good, however, if V has an unbounded range or if 
g gets very large and varies a lot in regions where df is small. 

2 Why not use sample cdf's for the two subsamples as estimates of the com­
ponents on the right of equation (2)? Because, since the sample cdf's put 
zero probability on values of X not observed in the sample, they leave the 
conditional distribution of, say, Y given X undefined except at values of X 
observed in the first sample. Another way to make the same point: the sample 
cdf's do not define dF:r I dF: except at values of X found in the first sample. 
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~ g ( V;km) n;k•nj~mlni . . . (3) 
j,k,m 

Here n;k• would be formed from the first sample, n;•m from the 
second, and n1.. from the two together. It is assumed that ob­
servations are weighted to sum to N. 

In practice the choice of cell sizes is important. They should 
be small enough that g varies little within cells, yet large enough 
so that the n's do not become very small in any cell. These two 
requirements may be incompatible for some g's, in which case 
the samples do ·not provide adequate information, even on the 
independence assumption, to evaluate expression (1). Also, the 
two requirements may bala111ce out in different ways for different 
g's. For example, one might want narrow cells in the income di­
mension and wide cells in the "value of automobiles owned" di­
mension when evaluating the effects of a change in income tax 
law, but want exactly the opposite when evaluating the effects 
of an automobile excise tax. One could either ( 1) work with a 
single histogram and choose a fairly fine grid for a wide variety 
of applications, or (2) maintain the whole of the two samples in 
storage and provide a standard routine for forming histograms 
with user-supplied grids, depending on the application. 

In most applications of these procedures, a reasonable and com­
putationally efficient method for handling empty cells would be 
essential. If there were, for instance, 10 variables in X, each 
classified into deciles, there would be 10 1 0 , or 10 billion, cells. If 
one indexed cells naively and stored informaj;ion for each one, 
the computational costs would be very high. Since sample size is 
much less tha111 10 billion, the natural procedure is to index cells 
by observations they contain or are near to. In this way, the 
number of terms in the sum (3) would be kept to a number 
similar to sample size. 

Since n;k·, n;.m are independent of one another and have a bi­
nomial distribution, and since n1•• can be expressed in terms of 
n;k· a111d n;.m, it would be possible to form an estimated covariance 
matrix for the terms n ;k·nf·m/n j .. appearing in sum (3), and 
hence to provide a standard error for sum (3) that would warn 
when results are unreliable. 

The advantages of a procedure like the one outlined here over 
matching to create a synthetic data set are, in summary : (a) the 
estimate it generates of the joint distribution is more economical 
of storage space; (b) the procedure lends itself to computation 
of standard errors indicating the reliability of computations based 
on it; ( c) the procedure can be connected to the large statistical 
literature on estimating density functions and multidimensional 
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contingency tables,3 and (d) it is likely to give more accurate re­
sults than matching. 

Evaluating Matching Procedures 

A critical difference between exact matching and synthetic file 
formation is that the local sparseness or denseness of the samples 
Plays fun<lamentally different roles in the two problems. For 
exact matching, a dense region of the X-space is one in which we 
have many observations whose X values differ by less than the 
standard deviation of measurement error in X. Such regions 
Present special problems because within them exact matching be­
comes difficult; in other (sparse) regions exact matching may be 
easy. For synthetic file formation, on the other hand, a dense 
region of X-space is one within which we expect that the distribu­
tions of Y and Z given X change little (both Y and Z are locally 
independent of X) ; it is, at the same time, a region within which 
we have many observations. Such regions are no problem at all, 
since within them any arbitrary matching procedure will produce 
results that do not distort the joint distribution of X, Y, and Z 
(except via the conditional independence assumption) . In sparse 
regions we are almost bound to distort the joint distribution in 
synthetic file formation, unless we go beyond "matching'' to more 
elaborate methods of generating synthetic observations. 

The whole idea of actually minimizing a sum of distances over 
all mat.ches seems computationally profligate in forming any very 
large synthetic data sets. Instead, dense regions should be treated 
by simply ensuring that all matches meet some minimum cri­
terion, beyond which improvements in match will make little dif­
ference. This is the intuition underlying the "equivalence class" 
methodology. On the other hand, it is essential to identify sparse 
regions and either not match there at all or flag as unreliable 
the synthetic observations from such regions. This is the role of 
distanc.e measures in synthetic matching. For these purposes, a 
good distance measure will be one that measures whether X's for 
the paired observations differ enough to make the conditional 
distribution of Y or Z given X differ across the observations. As 
a simple first approximation one might (assuming all data were 
scaled to have unit variance) measure the distanc.e between two 

a See, e.g., Bishop, Fienberg, and Holland (1975) and Moore and Yackel 
(1977) and references cited therein. Although these references do not deal 
explicitly with such highly multivariate problems as are usual in the match­
ing literature, they do contain useful insights nonetheless. 
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observations as the sum of squared differences in the conditional 
means of Y and Z given X between the two observations, using a 
local normality assumption so that this becomes a quadratic func­
tion of the X's. 

The distance measure Kadane proposes in the second part of 
his paper, because it uses information on Y and Z, is likely to 
produce systematic distortion in the estimated cdf. The implicit 
motivation for Kadane's distance measure is to match observa­
tions that are as "similar" as possible, where similarity in Y and 
Z, as. well as similarity in X matters. This is an appropriate idea 
when one is doing exact matching, and the distance measure 
Kadane suggests in the first part of the paper is thus reasonable 
in that application, even though it, too, uses information on Y 
and Z. In forming synthetic matches, however, suppose we en­
counter an observation in sample 1 with a very unusual value of 
Y given the associated X. If Y depends strongly on X, we may 
be quite sure that an observation in sample 2 with nearly the 
same value of X as this sample 1 observation is unlikely to have 
a similar value of Y. Thus, using Kadane's distance measure we 
will prefer to match with an observation having a different value 
of X, giving up some X-similarity in hopes of improving Y-simi­
larity. It is easy to see that this kind of tradeoff will result in a 
synthetic sample in which the conditional variance of Y given X 
will be biased downward if the synthetic sample uses sample 2 X 
values. If sample 1 X values are used, it is the conditional vari­
ance of Z given X that is biased downward. 

It is true that if one drops the assumption of conditional inde­
pedence of Y and Z, it is natural to use information on Y and Z 
in matching. This cannot, however, justify use of a distance 
measure based on reasoning appropriate to the exact-match case. 
If information on Y and Z is used in matching, it ought to be done 
on the basis of an explicit assumption about the nature of condi­
tional dependence between Y and Z, and using a method that 
would make the distance measure unrelated to Y and Z under the 
conditional independence assumption. 

It may be worthwhile to suggest ways to do sensitivity analysis 
of existing matching procedure without redoing the matching on 
a different conceptual base. To check whether the quality of 
match in sparse regions is making much difference to results, one 
could take an existing synthetic data set in which the X's from 
both samples (X1 and X2) were available for each observation 
and correct the matches for conditional means. For the purposes 
of this kind of test, one might use the assumption of joint normal­
ity, so that E[ZIX] =a+Xb. Assuming that X1 is the X going in 
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to the synthetic observation in each case, with X 2 discarded, the 
original matched synthetic data set contains observations of the 
form (X11Y,Z). The proposal here is to form another data set 
with observations of the form [X11Y,Z+ (X1-X2)b]. The param­
eter vector b, of course, would be calculated by the usual least­
squares formulas from the sample variance-covariance matrix. 
The new sample might in most applications give the same results 
as the original synthetic sample, in which case the original match­
ing procedure does not suffer much from the kinds of bias that 
have concerned me in this set of remarks. On the other hand, if 
results do differ across the two samples, systematic accounting 
for the effects of bad matches in sparse regions is esential. 

Probably even more important would be sensitivity analyses for 
the conditional independence assumption. To check this assump­
tion well, one would need some extraneous source of information 
on conditional dependence between Y and Z given X. In a sample 
with many variables it is likely to be difficult to obtain such 
information by introspection, since people are not likely to have 
reliable intuitions about interrelations among large numbers of 
variables. Sometimes it may happen that not all the variables 
actually in both samples are used in matching, either because of 
some missing observations or because it is felt that using all the 
X's makes matching too complicated. In that case, a sensitivity 
test for conditional independence given the X's actually used is 
Possible by doing the match also with a larger set of X's and com­
paring the results with the smaller set. 

In closing, let me repeat the point that in my opinion there is 
nothing that a matched synthetic data set can do that could not be 
done cheaper and better by the two original data sets sitting be­
hind a routine for computing histograms, or, instead, a fine­
grained histogram sitting behind a routine for aggregating it. In 
fact, once started down the road of considering this problem ex­
plicitly as one of joint-density-function estimation, specialists in 
this field are likely to improve substantially on the methods I out­
lined at the beginning of these remarks. 
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REPLY 

Joseph B. Kadane 

I welcome the constructive nature of Sims' "alternative to 
matching." It deserves to be taken seriously, and its properties 
should be investigated. However, Sims assumes the conditional 
independence hypothesis, which the second part of my paper 
eschews. Consequently, Sims' "alternative" is not an alternative 
to matching in the context in which I proposed that matching. Of 
the advantages advanced by Sims for his method, I agree with 
(b) and (c), but regard (a) and (d) as undemonstrated specu-
lation. 

It is easy to see that under the conditional independence as­
sumption lyz=~yx~;~l.rn, so that all the parameters of the model 
may be estimated without resort to matching. Thus Sims' view 
that "nothing that a matched synthetic data set can do could not 
be done cheaper and better by the two original data sets . . ." is 
unsurprising in this context. 

However, when conditional independence is not assumed, new 
problems develop. Sims believes that it would be difficult to obtain 
information on lyz by introspection, "since people are not likely 
to have reliable intuitions about interrelations among large num­
bers of variables." To the contrary, all that is needed to give an 
opinion on lyz is introspections on pairs of variables. Constraints 
must be imposed so that the information obtained is consistent 
with what is known about ~n and lzz from the sample. The 
methods to do this sort of thing are new but not impossible.1 

With a single value for ~rz, or several values with probability 
values attached, I believe that something like matching may be 
natural. In fact, Sims agrees that in this case "it is natural to use 
information on Y and Z in matching." However, I must agree 
with him, that should the introspected value of ~rz satisfy the 
conditional independence hypothesis, it would be a good property 
for a matching measure not to put any weight on the Y and Z 
components. I do not know whether this is true of 81 +82, although 
it is of course true of the alternative measure 

[~;~ 0 
0 0 
0 0 

1 Joseph B. Kadane, James M. Dickey, Robert L. Winkler, Wayne S. Smith, 
and Steven S. Peters, "Interactive Elicitation of Opinion for a Normal Linear 
Model." Pittsburgh: Carnegie-Mellon University, June 8, 1977. (Unpublished 
fifth draft) 
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This is an area I intend to investigate further, and I thank Sims 
fO'r raising the question. 

The question of bias caused by different measures is also an 
interesting one deserving further study. If the metric 

[~;~ 0 0] 
0 0 0 
0 0 0 

is used, no bias is present but it is _possible that information is 
wasted. If S1 + S2 is used, bias may be introduced. As I remark in 
Illy paper, I regard the relative merits of these two measures as 
an open question; after reading Sims' comment, I still do. Of 
course, bias in the conditional variance given X is not of great 
interest, as better estimates of that are available immediately 
without matching. Whether l:Sias results in t_he estimation of the 
integral of functions g is something about which very little is 
known. I suspect that the systematic overestimation of tax reve­
nue, because the ability of tax payers to adjust their behavior to 
minimize their taxes is not taken into account, is a far more seri­
ous source of bias. 


