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Estimation of Race and Ethnicity by Re-Weighting Tax Data 

Robin Fisher1 

January 2023 

U.S. tax forms do not collect information about race or ethnicity and thus the 
tax data available for use in tax policy analysis by the Treasury Department 
does not include such information. We impute information about race and 
Hispanic origin (RH) to a stratified random sample of taxpayers used in 
Treasury’s Individual Tax Model to allow for tax policy analysis by race and 
Hispanic origin. Specifically, we use a set of explanatory variables, including 
total income, filing status, age, number of dependents, sex, first name, last 
name, and the ZIP Code Tabulation Area (ZCTA) of the residence, to make 
inferences about a taxpayer’s race and Hispanic origin. We apply Bayesian 
inference to estimate the probabilities that each taxpayer in our sample is in 
each of the 6 groups— Hispanic, White, Black, American Indian or Alaska 
Native, Asian or Pacific Islander (API), and multiple-race—given the 
variables, which, in turn, form the 6 RH weights for each taxpayer.  

Any taxpayer data used in this research was kept in a secured Treasury or IRS data repository, and all 
results have been reviewed to ensure that no confidential information is disclosed. 

1 Robin Fisher: Office of Tax Analysis, U.S. Department of the Treasury, Robin.Fisher@treasury.gov 
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I. Introduction 

Tax law can have different impacts on individuals in different racial and ethnic groups. 

Such disparate tax outcomes can occur to the extent that individual characteristics that are used 

in tax law—e.g., marital status, number of children in the family, the level and sources of family 

income, household expenses, etc.—vary across racial and ethnic groups. However, unlike some 

other Federal agencies, the Internal Revenue Service (IRS) does not collect information about the 

tax filer’s race or ethnicity (Bearer-Friend (2019), Brown (2021)). As a result, the tax data 

available to the Office of Tax Analysis (OTA) for use in its analyses does not include 

information about race and ethnicity. To conduct tax policy analysis by race and ethnicity, we 

first must develop a method to impute information about race and Hispanic origin to a stratified 

random sample of taxpayers. These representative samples are used for tax analysis modeling 

and can be modified to facilitate a better understanding of tax outcomes by race and Hispanic 

origin. 

The Individual Tax Model (ITM), established by the Office of Tax Analysis (OTA) of the 

Treasury Department, is based on a stratified random sample of tax returns from the Individual 

and Sole Proprietor sample (Statistics of Income (2016)) and a sample of non-filing tax units for 

a tax year. We use total income, filing status, age, number of dependents, sex, first name, last 

name, and the ZIP Code Tabulation Area (ZCTA) of the residence as the explanatory variables to 

make inferences about the race and Hispanic origin category of the primary taxpayer of a filing 

unit or family. We apply Bayesian inference to estimate the probabilities that each taxpayer in 

our tax sample is in each of the 6 racial and Hispanic origin groups—White, Black, American 

Indian or Alaska Native (Native), Asian or Pacific Islander (API), multiple-race, and Hispanic—

given the explanatory variables. As used in this paper, these categories are mutually exclusive: 
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Hispanic people of any race are included in the Hispanic category and excluded from the other 

categories. Six racial and Hispanic origin weights are formed for each taxpayer by multiplying 

the estimated race and Hispanic origin probabilities by the taxpayer’s sampling weight in the file.  

 

II. Imputation of Race and Hispanic Origan  

Since information about race and Hispanic origin (RH) is not present on the tax data, we 

use external data sources to provide the information to make inferences. As mentioned earlier, 

OTA uses the Individual Tax Model (ITM) to calculate estimates of various tax quantities and 

simulate the revenue effects of tax law changes. The ITM sample is the union of a stratified 

random sample of Federal individual income tax units (the IRS Statistics of Income’s Individual 

and Sole Proprietor sample, further described below) and a sample of nonfiling units. For any 

discrete variables X and Y, including variables calculated from the tax model or, for example, 

the name of the primary filer in the tax unit, the empirical distribution is: 

𝐸𝐸�(𝑓𝑓(𝑋𝑋,𝑌𝑌)) = �𝑤𝑤𝑘𝑘
𝑘𝑘

𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑦𝑦𝑘𝑘), 

where 𝑤𝑤𝑘𝑘 is the normalized sample weight for record k. The estimates for the RH categories take 

the following form: 

𝐸𝐸��𝑓𝑓(𝑅𝑅𝑅𝑅,𝑋𝑋,𝑌𝑌)� = �𝑤𝑤𝑘𝑘
𝑘𝑘

𝑃𝑃(𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ|𝑋𝑋 = 𝑥𝑥𝑘𝑘)𝑓𝑓(𝑟𝑟ℎ, 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘). 

An estimate for 𝐸𝐸(𝑓𝑓(𝑅𝑅𝑅𝑅,𝑋𝑋,𝑌𝑌)) can be calculated from the ITM by using a new weight, 

𝑤𝑤𝑘𝑘𝑃𝑃(𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ|𝑋𝑋 = 𝑥𝑥), for each record. This reduces the problem to one of estimating 𝑃𝑃(𝑅𝑅𝑅𝑅 =

𝑟𝑟ℎ|𝑋𝑋 = 𝑥𝑥𝑘𝑘). 

Estimates of 𝑃𝑃(𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ|𝑋𝑋 = 𝑥𝑥𝑘𝑘), using names and geography as the explanatory 

variables, have been in use for several years. In this paper, we build on the Bayesian Improved 
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First Name, Surname, Geocoding (BIFSG) by Adjaye-Gbewonyo et al. (2014), Haas et al. 

(2019), and Voicu (2018). There is evidence that the geocoding method alone is less effective in 

predicting the RH categories than an expanded method that incorporates names and other 

information. For example, an early version of the BIFSG method that uses the surname and 

address was shown to be 108 percent more effective than the address-only method (Elliot, et al. 

(2009)). This outcome may result because some RH groups, e.g., Asians, Hispanics, and Natives, 

are less geographically concentrated relative to Blacks. For the BIFSG model, the strategy is to 

use Bayesian updating to combine separate joint distributions of RH, first names, surnames, and 

geography. We have 

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍) = 𝐶𝐶
𝑃𝑃(𝑅𝑅𝑅𝑅,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

𝑃𝑃(𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑃𝑃(𝑅𝑅𝑅𝑅) 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍), 

where ZCTA denotes the Zip Code Tabulation Area, defined by the US Census Bureau, fname 

denotes first name, and sname denotes surname. The constant 𝐶𝐶 is the normalizing constant, and 

the conditional independence of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 given 𝑅𝑅𝑅𝑅 is an assumption in the BIFSG 

estimator. 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍) is tabulated from the 2010 Census, 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) is tabulated from 

mortgage records (Tzioumis, 2018), and 𝑃𝑃(𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) is tabulated from the 2010 Census. The 

BIFSG estimator is implemented in Python module surgeo. That package also contains files with 

tabulations of the relevant conditional distributions. 

The RH value for a tax unit in our model is the RH value for its primary filer. Here, the 

values for the RH variables are in the set {White, Black, Asian or Pacific Islander (API), Native 

American, Multiple Race, Hispanic}. This is the classification used in the BIFSG literature and 

the surgeo software, and it is also one of the official Census classifications. Nonetheless, it is one 

of several potential choices; other choices include the cross-classification of race with Hispanic 
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origin or something more detailed. However, the use of more detailed classifications will likely 

result in estimation difficulties from low counts of unweighted records in some cells. 

ZCTAs are assigned to records in the ITM by first assigning Census blocks to the 

records, then using Census files to match those blocks to ZCTAs. As a result, about 78 percent of 

records have ZCTAs assigned. When the ZCTA could not be assigned, the 9-digit ZIP code was 

filled in, where available, leaving about 6 percent of the records in the ITM file without a ZCTA 

or ZIP code value. 

Nearly all records have names assigned, but some names do not match to the BIFSG 

database. This is the case with about 13 percent of the first names and less than 1 percent of the 

surnames. When a value is missing, the relevant ratio in the equation above is set to one. This is 

consistent with an assumption that the variable is missing at random, which may not hold. 

Ongoing work centers on increasing the match rates for ZCTAs and names as well as 

investigating the association between the presence of missing values and the RH variable. 

We use Markov Random Fields (MRFs) for our modeling framework.2 The dependence 

relationship for these models is represented by a graph 𝒢𝒢 = {𝑉𝑉,𝐸𝐸}, where 𝑉𝑉 = {𝑣𝑣𝑖𝑖 , . . . , 𝑣𝑣𝑑𝑑} is a 

set of vertices which correspond to a set of variables 𝐗𝐗𝐕𝐕 in a d-dimensional multivariate 

distribution 𝑃𝑃, and 𝐸𝐸 = {𝑒𝑒𝑖𝑖,𝑗𝑗 , 𝑖𝑖 ∈ {1, . . . ,𝑑𝑑}, 𝑗𝑗 ∈ {𝑖𝑖 + 1, . . . ,𝑑𝑑}} is a set of undirected lines. If it is 

true that 𝑒𝑒𝑖𝑖,𝑗𝑗 ∉ 𝐸𝐸, only if 𝑣𝑣𝑖𝑖 is independent of 𝑣𝑣𝑗𝑗 given 𝑆𝑆 for any set 𝑆𝑆 ⊆ 𝑉𝑉 − {𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗}, then 𝒢𝒢 is 

Markov with respect to 𝑃𝑃. 

A clique is a maximal complete subgraph. If 𝒢𝒢 is Markov with respect to 𝑃𝑃, then 

𝑃𝑃(𝐗𝐗𝐕𝐕) = ∏ 𝜙𝜙𝑐𝑐 ((𝑋𝑋𝑐𝑐)), where 𝑐𝑐 indexes the cliques in 𝒢𝒢. If 𝒢𝒢 is decomposable, 

 
2 See Koller and Friedman (2009) for a detailed discussion. 
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𝑃𝑃(𝐗𝐗𝐕𝐕) = ∏ 𝑃𝑃(𝑋𝑋𝑐𝑐)
𝑃𝑃(𝑋𝑋𝑐𝑐∩𝑋𝑋𝑑𝑑)𝑐𝑐  , 

where 𝑑𝑑 and 𝑐𝑐 index cliques and 𝑑𝑑 < 𝑐𝑐, for some ordering of the cliques. This corresponds to 

decomposability in log-linear models for contingency tables (Haberman (1974)).  We call the 

arrays {𝑃𝑃(𝑋𝑋𝑐𝑐): 𝑐𝑐 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖 𝒢𝒢} clique tables. The sufficient statistics are the collection of 

frequency tables for the cliques (the empirical clique tables), and the maximum likelihood 

estimator for complete data is just the factorization above, where the empirical clique tables 

stand in for the true clique tables under the model. 

Decomposable models have some advantages. First, we can control the complexity of the 

model by controlling the maximal clique size. This is true in both an algorithmic and statistical 

sense. Statistically, controlling the clique size provides some protection against overfitting. 

Algorithmically, the computational cost of parameter estimation and the calculation of 

conditional probabilities increase very quickly as the size of the cliques increases. Second, we 

can estimate each clique table separately and combine them later with decomposable models. 

This is very helpful, since we don’t have to re-estimate all the parameters in the model whenever 

we change the set 𝑋𝑋 of covariates. Note that, with 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑋𝑋) estimated, conditioning is possible 

in any direction so 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑋𝑋) is directly estimated, as is 𝑃𝑃(𝑋𝑋1|𝑅𝑅𝑅𝑅) for 𝑋𝑋1 ∈ 𝑋𝑋.  For 𝑌𝑌 ∈ 𝑇𝑇\𝑋𝑋,  

𝑃𝑃(𝑌𝑌|𝑅𝑅𝑅𝑅) = ∑ 𝑃𝑃(𝑌𝑌|𝑋𝑋 = 𝑥𝑥)𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑅𝑅𝑅𝑅)𝑥𝑥 , 

or, similarly, 

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑌𝑌) = ∑ 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑋𝑋 = 𝑥𝑥)𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑌𝑌)𝑥𝑥 . 

We present the standard BIFSG model and one proposed expanded model in Figure 1. 

The chart on the left shows the Markov random field (MRF) for the BIFSG model; there are 

three cliques corresponding to the terms in the equation. The generating class for this model is 
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{[𝑅𝑅𝑅𝑅, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓], [𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠], [𝑅𝑅𝑅𝑅,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍]}, and the probability distribution can be represented 

as  

𝑃𝑃(𝑅𝑅𝑅𝑅,𝑋𝑋) = 𝑃𝑃(𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑔𝑔𝑔𝑔𝑔𝑔) 

                                                 = 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑔𝑔𝑔𝑔𝑔𝑔) 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑃𝑃(𝑅𝑅𝑅𝑅)

𝑃𝑃(𝑅𝑅𝑅𝑅,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑃𝑃(𝑅𝑅𝑅𝑅) . 

The MRF for the expanded model is presented on the right. The generating class for this model is 

{[𝑅𝑅𝑅𝑅, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓], [𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠], [𝑅𝑅𝑅𝑅,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍], [𝑅𝑅𝑅𝑅,𝑋𝑋1,𝑋𝑋2]}, and the conditional distribution of 𝑅𝑅𝑅𝑅 

is 

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍,𝑋𝑋1,𝑋𝑋2) =

𝐶𝐶 𝑃𝑃�𝑅𝑅𝑅𝑅�𝑋𝑋1,𝑋𝑋2�
𝑃𝑃(𝑅𝑅𝑅𝑅)

𝑃𝑃�𝑅𝑅𝑅𝑅�𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
𝑃𝑃(𝑅𝑅𝑅𝑅)

𝑃𝑃�𝑅𝑅𝑅𝑅�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
𝑃𝑃(𝑅𝑅𝑅𝑅) 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍), where C is a constant. 

 

 

Figure 1. MRFs for the BIFSG model (left) and a proposed expanded model (right) 
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Thus, the BIFSG estimator is systematically different from the proposed extension by a factor 

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑥𝑥1,𝑥𝑥2)
𝑃𝑃(𝑅𝑅𝑅𝑅)

; we have just added a clique and, with it, a factor containing a clique table we can 

estimate separately. Further decomposable extensions of the model follow along similar lines. 

Note this is not the final model we apply in this paper, but a simpler version for illustrative 

purposes. 

In the decomposable BIFSG model, given any set of imputation covariates 𝑋𝑋, the model 

has the (perhaps implicit) assumption that 𝑅𝑅𝑅𝑅 ⫫ 𝑌𝑌|𝑋𝑋 for 𝑌𝑌 ∈ 𝑇𝑇\{𝑅𝑅𝑅𝑅,𝑋𝑋}. As a result, all 

association between 𝑌𝑌 and 𝑅𝑅𝑅𝑅 is mediated through 𝑋𝑋. In the BIFSG model illustrated in Figure 

2, if variables of interest include total income and marital status (totInc and MARS, respectively), 

then those variables depend on 𝑅𝑅𝑅𝑅 only through (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑔𝑔𝑔𝑔𝑔𝑔), their names and the 

location of their residence. If the analyst does not want to assume totInc and MARS are mediated 

through geo, then a model extension is needed.   
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Figure 2. Undirected Graph showing that (geo,sname,fname) separate (totInc,MARS) from RH 
in the BIFSG model.  This implies that association between RH and (totInc,MARS) is mediated 
by (fname,sname,geo).  

 

In an extension, we can assume that, for example, (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) are directly associated 

with 𝑅𝑅𝑅𝑅 as in Figure 3. 

 

 

Figure 3. Extended model where (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) are directly associated with 𝑅𝑅𝑅𝑅.   
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It is worth emphasizing that the distributions 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), and 

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍) are taken as known, even though they are tabulations from data with possible error 

sources. These distributions are fundamental to the estimation procedure. If we sum over the 

variables 𝑋𝑋1 and 𝑋𝑋2 in the equation above, the result is the BIFSG estimator; the BIFSG 

estimator defines the expectations of 𝑅𝑅𝑅𝑅 in this set of models. There is ongoing work to include 

uncertainty in the estimators for these distributions in the model. 

The tax filing sample used by the ITM is a stratified Bernoulli sample of Federal 

individual income tax returns drawn by the IRS each year—the Individual and Sole Proprietor 

file (INSOLE), (Statistics of Income (2016)). The non-filing sample is generated by the OTA 

based on the income information submitted by third parties to the IRS. The stratum identifier, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, is present in the file, and we include it in our model as a nuisance parameter. 

Specifically, we model the variation in the sample design as a collection of simple random 

samples of tax units from each stratum.  

Consider the problem of estimating the clique-table 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑋𝑋1,𝑋𝑋2). For the ITM, the 

sampling strata need to be accommodated. In the case of complete data, it would typically be 

appropriate to use sampling weights. Here, with the latent class variable 𝑅𝑅𝑅𝑅, it was not clear how 

to do that. Instead, we introduce a variable for the sampling stratum, CSAMP, and estimate the 

higher dimensional clique-table 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑋𝑋1,𝑋𝑋2,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) in order to estimate the marginal clique-

table 𝑃𝑃(𝑅𝑅𝑅𝑅,𝑋𝑋1,𝑋𝑋2). 

The probability vector for 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑘𝑘) is denoted 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘, and is a 

vector of probabilities, 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘 ∈ ℝ6. The unobserved sample counts of the RH categories for 

(𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑘𝑘) is denoted 𝐧𝐧𝑖𝑖,𝑗𝑗,𝑘𝑘  with  𝐧𝐧𝑖𝑖,𝑗𝑗,𝑘𝑘 ∈ ℕ6. The graph for this model is 

shown in Figure 4. This is the model structure we use for the parameter estimation for each 
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clique-table. The final model is assembled from the four clique-tables with ITM variables and 

the three 2-member clique-tables with name or geography information. 

 

 

Figure 4. Another proposed expanded model, including stratum variable CSAMP. This is also 
the model structure used to estimate the parameters for the each of the clique-tables 

𝑃𝑃(𝑅𝑅𝑅𝑅,𝑋𝑋1,𝑋𝑋2). 
 

III. Current Extended Model 

We use the following variables in the current model. 

• total income, totInc, 

• filing status, MARS,  

• age,  

• number of dependents, ndep,  

• sex of the primary taxpayer, gen1,  

• first name, fname 
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• last name, sname, and the  

• ZIP Code Tabulation Area (ZCTA), ZCTA.  

The graph for the current extended model is presented in Figure 5. It is decomposable with seven 

cliques total, three for the BIFSG variables on the right, and four for the ITM variables. The joint 

distribution function can be factorized as 

𝑃𝑃(𝑅𝑅𝑅𝑅,𝑋𝑋,𝐹𝐹𝐹𝐹𝐹𝐹)        

= 𝑃𝑃(𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅,𝑔𝑔𝑔𝑔𝑔𝑔1, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

𝑝𝑝(𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅,𝑔𝑔𝑔𝑔𝑔𝑔1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑃𝑃(𝑅𝑅𝑅𝑅,𝑔𝑔𝑔𝑔𝑔𝑔1)
𝑃𝑃(𝑅𝑅𝑅𝑅, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)

𝑃𝑃(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅,𝑎𝑎𝑎𝑎𝑎𝑎,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)
𝑃𝑃(𝑅𝑅𝑅𝑅,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) ∙ 

𝑃𝑃(𝑅𝑅𝑅𝑅, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒)
𝑃𝑃(𝑅𝑅𝑅𝑅)

𝑃𝑃(𝑅𝑅𝑅𝑅, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑃𝑃(𝑅𝑅𝑅𝑅)

𝑃𝑃(𝑅𝑅𝑅𝑅,𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍)
𝑃𝑃(𝑅𝑅𝑅𝑅)

 

 

As we noted earlier, this model includes the assumption that that 𝑋𝑋 ⫫ 𝐹𝐹𝐹𝐹𝐹𝐹|𝑅𝑅𝑅𝑅. It is plausible 

that this assumption is violated, especially with respect to geography. If this independence 

assumption is relaxed, our estimator for 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑋𝑋) is biased. We are currently researching how to 

fit a model without these assumptions. 
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Figure 5 Undirected graph for the current extended model. 
 

Here is the set of conditional distributions for the current model. 

 

𝑅𝑅𝑅𝑅|(𝐹𝐹 = 𝑓𝑓𝑖𝑖)~𝑀𝑀𝑀𝑀(1,𝜙𝜙𝑓𝑓𝑖𝑖) 

𝑅𝑅𝑅𝑅|(𝑆𝑆 = 𝑠𝑠𝑖𝑖)~𝑀𝑀𝑀𝑀(1,𝜙𝜙𝑠𝑠𝑖𝑖) 

𝑅𝑅𝑅𝑅|(𝐺𝐺 = 𝑔𝑔𝑖𝑖)~𝑀𝑀𝑀𝑀(1,𝜙𝜙𝑔𝑔𝑖𝑖) 

𝑅𝑅𝐻𝐻𝑖𝑖|(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖 = 𝑡𝑡,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚,𝐶𝐶𝐶𝐶 = 𝑐𝑐) ~𝑀𝑀𝑀𝑀(1,𝜃𝜃𝑡𝑡,𝑚𝑚,𝑐𝑐
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑐𝑐𝑐𝑐) 

𝑅𝑅𝐻𝐻𝑖𝑖|(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖 = 𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔1 = 𝑔𝑔,𝐶𝐶𝐶𝐶 = 𝑐𝑐) ~𝑀𝑀𝑀𝑀(1,𝜃𝜃𝑡𝑡,𝑔𝑔,𝑐𝑐
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑔𝑔𝑔𝑔𝑔𝑔1,𝑐𝑐𝑐𝑐) 

𝑅𝑅𝐻𝐻𝑖𝑖|(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑎𝑎,𝐶𝐶𝐶𝐶 = 𝑐𝑐) ~𝑀𝑀𝑀𝑀(1,𝜃𝜃𝑚𝑚,𝑎𝑎,𝑐𝑐
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑎𝑎𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐) 

𝑅𝑅𝐻𝐻𝑖𝑖|(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑑𝑑,𝑔𝑔𝑔𝑔𝑔𝑔1 = 𝑔𝑔,𝐶𝐶𝐶𝐶 = 𝑐𝑐) ~𝑀𝑀𝑀𝑀(1,𝜃𝜃𝑑𝑑,𝑔𝑔,𝑐𝑐
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝑔𝑔𝑔𝑔𝑔𝑔1,𝑐𝑐𝑐𝑐) 

In the above equations, the parameters (𝜙𝜙𝑓𝑓,𝜙𝜙𝑠𝑠,𝜙𝜙𝑔𝑔) are taken as known. All that remains 

is to estimate the 𝜃𝜃 parameters. We use a Bayesian method to estimate these unknown 
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parameters. This approach requires starting with a prior distribution for 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘. Suppressing the 

superscripts, we specify that as a Dirichlet distribution, 

𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼0𝟏𝟏). 

We let 𝛼𝛼0 = 1.1. The prior with 𝛼𝛼0 = 1 is uniform over the support of 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘, and is often 

considered noninformative. In the case with 𝛼𝛼0 = 1.1, we prohibit values of 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘 very close to 

the boundary, where one or more of the probabilities are close to zero. In particular, more work 

is needed since letting 𝛼𝛼0 = 1.1   may be too informative for the rare RH categories, native 

American and Multiple Race NH.  

We calculate the posterior expectations in this model with a Gibbs Sample Markov Chain 

Monte Carlo method (Metropolis et al. (1953) and Geman and Geman (1984)). This is a way to 

simulate observations from any distribution from which we can generate random variables from 

the full conditional distributions, which are the conditional distributions of the target variables, 

given everything else in the model. For a parameter with a sufficient statistic, the ‘everything 

else’ reduces to the sufficient statistic. This sufficient statistic may include latent variables. That 

is the case for 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘, where the sufficient statistic is the (𝑅𝑅𝑅𝑅,𝑋𝑋1,𝑋𝑋2,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) table. The variable 

𝑅𝑅𝐻𝐻𝑚𝑚, the Race and Hispanic origin assignment for record m, must be simulated for each record.  

The full conditional distributions of 𝜃𝜃 and 𝑅𝑅𝑅𝑅, given everything else (EE), are 

𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑋𝑋1,𝑋𝑋2,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|𝐸𝐸𝐸𝐸 ∼ 𝐷𝐷𝐷𝐷𝐷𝐷(𝛼𝛼0𝟏𝟏 + 𝐧𝐧𝑖𝑖,𝑗𝑗,𝑘𝑘), where 𝒏𝒏𝑖𝑖,𝑗𝑗,𝑘𝑘 is the vector of counts in the 𝑅𝑅𝑅𝑅 

categories for (𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑘𝑘) and 

𝑅𝑅𝐻𝐻𝑚𝑚|(𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑘𝑘) |𝐸𝐸𝐸𝐸 ∼

                𝑀𝑀𝑀𝑀(1,𝐶𝐶𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑋𝑋1,𝑋𝑋2,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑔𝑔𝑔𝑔𝑔𝑔)

𝑝𝑝(𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

𝑝𝑝(𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑝𝑝(𝑅𝑅𝑅𝑅)
)  

for record 𝑚𝑚. 
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An outline of the Gibbs Sampling algorithm in general and for this problem is presented in the 

Appendix.  

The full current extended model uses the following variables: total income, filing status, 

age, number of dependents, and sex. All continuous variables are converted to discrete variables 

by grouping, so we can form a model on multidimensional contingency tables. Although the 

current extended model seems to do a better job than the standard BIFSG model in predicting the 

RH categories, determination of a set of variables which will perform well for general use of the 

tax model is the subject of ongoing research.  

 

III.1. Variance Estimation 

Variance estimates are important in order to have a general understanding of the 

reliability of an estimated table. Even in the case where RH is not involved, some tables involve 

such small subpopulations that the sample may make it more difficult to evaluate the reliability. 

Sometimes estimated standard errors (SEs) may be large enough that we may not want to use the 

tables. It may also happen that the estimated effect of a policy change, or the differential effect 

between races, may be small compared to the standard error. 

Test statistics in ordinary sampling situations, like i.i.d. samples, are relatively easily 

calculated from the log-likelihood in many situations. In the case of a designed sample like the 

ITM sample and the RH imputations that are not i.i.d., we need to do something else. 

For the ITM sample and RH imputations there are a few sources of variance in the 

estimate. The first is the sampling error variance from the ITM sample. This is just the variance 

that arises from choosing a random sample from a fixed finite population. Second, there are the 

variances for the estimated parameters 𝜃𝜃 in the model. 
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An additional source of variance comes from the s variances associated with 

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑔𝑔𝑔𝑔𝑔𝑔). These are tabulated using data from the 2010 decennial census 

and are likely to be different in current cross-sections. We can think of this as an extra 

component of variance or a bias term.3 In addition, categories formed by names or geography 

may be very small. For example, there are many rare names, so 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) may be based on 

a small sample. These factors potentially increase the SEs. 

Estimators for the ITM sampling variances have been available for a while.  The IRS 

made coefficients of variation (CVs) available for several variables on the ITM. In addition OTA 

has implemented bootstrap-based replicate weights for the ITM, so variances related to quantities 

in the ITM can be calculated.4 For at least a handful of variables, CVs calculated from the ITM 

replicates estimates match well with those produced by the IRS in the 2016 ITM. Note that these 

variances are on the ITM and may be used for any of the regular tables produced for the ITM.   

Variances for the 𝜃𝜃 parameters of the RH imputations are calculated using the Gibbs 

Sampler. As noted above, the output of the Markov Chain Monte Carlo (MCMC) represents a 

sample from the distribution of 𝜃𝜃|data. We can use the values generated by the Gibbs Sampler by 

themselves to calculate variances of 𝜃𝜃, which is useful for model-checking, or we can combine 

them with the replicates for the ITM sampling error variances. We have 100 replicates from the 

sampling error variance estimator and 100 from the Gibbs Sampler. We combine the 100 

replicates from the ITM bootstrap replicates with 100 replicates from the Gibbs Sampler to get 

100 combined replicates. The ordering of the combinations does not matter. For the 𝑏𝑏𝑡𝑡ℎ 

combined replicate,  

 
3 We expect new data from the Census in the next few months.   
4 We use the mrfbootstrap function in the R package survey (Lumley (2020)).   
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𝑌𝑌(𝑏𝑏) = �𝑤𝑤𝑖𝑖
(𝑏𝑏)𝑃𝑃(𝑏𝑏)(𝑅𝑅𝑅𝑅|𝑋𝑋 = 𝑥𝑥𝑖𝑖)𝑌𝑌𝑖𝑖

𝑖𝑖

 

Here, 𝑌𝑌𝑖𝑖 may depend on any subset of (𝑇𝑇,𝑅𝑅𝑅𝑅). 

𝑌𝑌� =
1
𝐵𝐵
�𝑌𝑌(𝑏𝑏)

𝑏𝑏

 

𝑣𝑣𝑣𝑣𝑣𝑣� (𝑌𝑌) =
1

𝐵𝐵 − 1
��𝑌𝑌(𝑏𝑏) − 𝑌𝑌��

2

𝑏𝑏

 

 

III.2. Comparison of Imputation Results to Census 

To evaluate the current extended BIFSG imputation on the ITM, we compare the 

distribution of RH as measured by the U.S. Census Bureau’s 2020 Decennial census for the U.S. 

residential adult population to the distribution of RH in Treasury’s ITM for the primary filer on a 

return for 2023.5 As shown in Table 1, the imputation is more likely to sort multiple race primary 

filers into a single RH designation while White primary filers appear to be overrepresented in the 

imputation results.  

Some of the difference can be explained by conceptual differences between the two 

distributions. Census’ adult population includes dependents over 18 and secondary filers on a 

joint return while the imputation does not include either of these populations. To the extent that 

RH of adult dependents and secondary filers is not distributed the same as other adults, the 

comparison will be imperfect.  

 
5 In Table 1, Native American includes Alaskan Native, Hawaiian Native and other Pacific Islander. Treasury does 
not have a category for “some other race alone.” 
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III.3. Testing the methodology on U.S. Army applicant data 

We have tested our extension of the BIFSG model to the original BIFSG model, with 

promising results, especially with regard to imputing the probabilities of being Black or 

Hispanic. With permission of the U.S. Army, we tested our imputation using a dataset of the 

universe of U.S. army applicants. These data include the applicant’s first name, surname, 

address, marital status, and income as well as self -reported race. Our extended model results 

were very similar in predicting the joint distribution of marital status and income by race for 

White applicants, slightly improved for Hispanic applicants, much improved for Black 

applicants, but not improved for Asian applicants. This testing is encouraging but not definitive. 

Relative to the general population as represented in the tax data, Army applicants are much less 

likely to be Asian and are more likely to be low-income and single.  
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We estimate the Kullback-Liebler (KL) distance between the estimated joint distributions 

(P ̂) of income and marital status (Xs) under the BIFSG model and the extended model as 

compared to the distributions as tabulated using the actual RH values in the military applicant 

data. The KL distances for the BIFSG model and extended model are as follows (where ξ 

represents parameters from the look-up tables for first name and last name).  

 

 

 

The only difference is the extra term in the extended model: (P ̂(RH=rh|X,θ))/P(RH=rh).  

Thus, the difference between the KL measures for the extended model and the BIFSG measure 

can be estimated as follows: 

 

 

Let 
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𝐷𝐷𝑋𝑋|𝑅𝑅𝑅𝑅,𝑡𝑡ℎ = �𝑃𝑃
𝑥𝑥

(𝑋𝑋|𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ)[log(
𝑃𝑃(𝑋𝑋|𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ)
𝑃𝑃�(𝑋𝑋|𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ,𝜃𝜃)

 

 

And 

 

𝐷𝐷𝑋𝑋 = �𝑃𝑃
𝑥𝑥

(𝑋𝑋|𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ)log(
𝑃𝑃(𝑋𝑋|𝑅𝑅𝑅𝑅 = 𝑟𝑟ℎ)

𝑃𝑃(𝑋𝑋) ). 

 

When the extended model performs better in terms of the KL measure, the difference between 

the KL distances should be negative, that is, 𝐷𝐷𝑋𝑋 > 𝐷𝐷𝑋𝑋|𝑅𝑅𝑅𝑅,𝑡𝑡ℎ.  

The comparison of the KL measurements for the imputation and reported RH by Army 

applicants appears in Table 2. The KL distance under Treasury’s extended model is virtually the 

same for White applicants, lower for Hispanic and Black applicants and higher for Asian 

applicants. Given that Asian applicants are only 1 percent of all military applicants but 6 percent 

of the U.S. resident population, we do not consider the results for Asian applicant RH from the 

military data to be definitive. It is also true that, since the sample has conditioned on being an 

Army applicant, the joint distribution of income, marital status, race, and geography are not the 

same as the ITM population. Therefore, although we are less confident in the Asian probabilities 

for the general model, this does not give us evidence to contradict our imputation model.  
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IV.  Conclusion 

In order to conduct equity analysis in taxation, we describe our method to address the 

omission of race and ethnicity from tax data used in our analyses. Our approach uses external 

information to facilitate inferences about an individual’s race and ethnicity. Specifically, we 

impute six race and Hispanic origin weights for use with our sample of tax units   that  that 

enables the re-weighted ITM sample to represent the racial and ethnic composition of the U.S. 

population.  

It is our goal to produce an imputation for Race/Hispanic Ethnicity that can be used on 

the ITM in support of the policy analysis OTA conducts for the administration. In pursuit of that 

goal  Our imputation method is based on a set of explanatory variables that are both intuitive and 

which analysis shows are associated  with both RH and other tax variables of interest. This 

results in  valid tax analysis when most of the dependence between the tax estimate of interest 

and the RH fields is explained by the selected explanatory variables. However, the optimal 

choice of explanatory variables required for policy analysis may vary by the policy being 

examined so we continue to investigate additional sets of variables that will be best suited to our 

expanding modeling needs.  
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Appendix 

An outline of the Gibbs Sampling algorithm is provided below. Note the superscript (𝑏𝑏) 

indexes the iteration number; it is not an exponent. The Gibbs sampler for the general case is as 

follows: 

• We have a set of random variables {𝑋𝑋𝑘𝑘,  𝑘𝑘 = 1, … ,𝐾𝐾} 

• For each 𝑘𝑘, we can generate a random variable from  𝑃𝑃�𝑋𝑋𝑘𝑘��𝑋𝑋𝑗𝑗 , 𝑗𝑗 ≠ 𝑘𝑘�� 

• Execute the following algorithm 

• Initialize the 𝑋𝑋𝑘𝑘’s to get �𝑋𝑋𝑘𝑘
(0),𝑘𝑘 = 1, … ,𝐾𝐾� 

• Repeat for 𝑏𝑏 = 1, … ,𝐵𝐵 for some large B: 

• For each 𝑘𝑘 

• Generate 𝑋𝑋𝑘𝑘
(𝑏𝑏)~ 𝑃𝑃 �𝑋𝑋𝑘𝑘��𝑋𝑋𝑗𝑗

(𝑏𝑏−1), 𝑗𝑗 ≠ 𝑘𝑘�� 

• Yields 𝑋𝑋(𝑏𝑏) 

• Yields a sample �𝑋𝑋(𝑏𝑏), b = 1, … B� 

• For large B, this sample approximates a sample from 𝑃𝑃(𝑋𝑋) 

• 1
𝐵𝐵
∑ 𝑓𝑓(𝑏𝑏 𝑥𝑥(𝑏𝑏)) → 𝐸𝐸(𝑓𝑓(𝑋𝑋)) almost surely 

 

To apply the Gibbs sampler to the current model, use the following algorithm:  

• Initialize 𝑅𝑅𝐻𝐻𝑚𝑚  for each ITM record 𝑚𝑚.   

• For each record, indexed by 𝑚𝑚, generate 𝑅𝑅𝐻𝐻𝑚𝑚
(0) from 𝑃𝑃(𝑅𝑅𝐻𝐻𝑚𝑚|𝐸𝐸𝐸𝐸) =

𝑀𝑀𝑀𝑀(1,𝐶𝐶 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑔𝑔𝑔𝑔𝑜𝑜𝑚𝑚)
𝑝𝑝(𝑅𝑅𝑅𝑅)

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑚𝑚)
𝑝𝑝(𝑅𝑅𝑅𝑅)

𝑃𝑃(𝑅𝑅𝑅𝑅|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑚𝑚)
𝑝𝑝(𝑅𝑅𝑅𝑅)

), where 𝑀𝑀𝑀𝑀(𝑛𝑛,𝑝𝑝) represents the 
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multinomial distribution with size 𝑛𝑛 and probability vector 𝑝𝑝. 𝐶𝐶 is a constant such that the 

second argument sums to 1. 

• Tabulate 𝐧𝐧𝑖𝑖,𝑗𝑗,𝑘𝑘
(0) = ∑𝑋𝑋𝑚𝑚=(𝑖𝑖,𝑗𝑗,𝑘𝑘) 𝑅𝑅𝑅𝑅𝑚𝑚

(0) 

• Main Loop 

• For 𝑏𝑏 = 1, … ,𝐵𝐵 

• Generate 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑏𝑏) ∼ 𝐷𝐷𝐷𝐷𝐷𝐷(𝟏𝟏,𝛼𝛼0 + 𝐧𝐧𝑖𝑖,𝑗𝑗,𝑘𝑘

(𝑏𝑏−1)) for each 𝑖𝑖, 𝑗𝑗,𝑘𝑘 

• Generate 𝑅𝑅𝐻𝐻𝑚𝑚
(𝑏𝑏) from 𝑃𝑃(𝑅𝑅𝑅𝑅|𝐸𝐸𝐸𝐸) =

𝑀𝑀𝑀𝑀(1,𝐶𝐶𝜃𝜃(𝑖𝑖,𝑗𝑗,𝑘𝑘)𝑚𝑚
(𝑏𝑏) 𝑃𝑃(𝑅𝑅𝑅𝑅|𝑔𝑔𝑔𝑔𝑜𝑜𝑚𝑚)

𝑝𝑝(𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅|𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑚𝑚)

𝑝𝑝(𝑅𝑅𝑅𝑅)
𝑃𝑃(𝑅𝑅𝑅𝑅|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒𝑚𝑚)

𝑝𝑝(𝑅𝑅𝑅𝑅)
) 

• Tabulate 𝐧𝐧𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑏𝑏) = ∑ 𝑅𝑅𝑋𝑋𝑚𝑚=(𝑖𝑖,𝑗𝑗,𝑘𝑘) 𝐻𝐻𝑚𝑚

(𝑏𝑏) 

This generates a sequence of values (𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑏𝑏) , 𝑏𝑏 = 1, . . .𝐵𝐵). If the initial values, where 𝑏𝑏 = 0, are far 

from the center of the posterior distribution, it may take several iterations for the sequence to 

move toward the mode of the posterior. As above, we can  

Collapse 𝜃𝜃(𝑏𝑏) over 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 for each value of (𝑖𝑖, 𝑗𝑗). 

𝜃𝜃𝑖𝑖,𝑗𝑗
(𝑏𝑏) =

∑ 𝜃𝜃𝑖𝑖,𝑗𝑗,𝑘𝑘
(𝑏𝑏)

𝑘𝑘 𝑝𝑝(𝑋𝑋1=𝑖𝑖,𝑋𝑋2=𝑗𝑗,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶=𝑘𝑘)

𝑝𝑝(𝑋𝑋1=𝑖𝑖,𝑋𝑋2=𝑗𝑗)
, 

Which is just 𝑃𝑃�(𝑅𝑅𝑅𝑅, |𝑋𝑋1 = 𝑖𝑖,𝑋𝑋2 = 𝑗𝑗) in the 𝑏𝑏𝑡𝑡ℎ iteration. 

Then if 𝐵𝐵 is large, 

𝐸𝐸(𝜃𝜃𝑖𝑖,𝑗𝑗|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 1
𝐵𝐵
∑ 𝜃𝜃𝑖𝑖,𝑗𝑗

(𝑏𝑏)𝐵𝐵
1 , 

and 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑖𝑖,𝑗𝑗|𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 1
𝐵𝐵
∑ 𝜃𝜃𝑖𝑖,𝑗𝑗

(𝑏𝑏)𝐵𝐵
1 𝜃𝜃𝑖𝑖,𝑗𝑗

(𝑏𝑏)𝑇𝑇. 
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Note that if the initialized value is not typical, then there may be a few iterations at the 

beginning where the points from the process are not typical of the distribution of interest. It is 

common practice, and one we follow, to delete some of the output of the sampler at the 

beginning. In this case, we use B=130, and delete the first 30, leaving 100 points in the sequence 

for estimation.   

For example, consider 𝑃𝑃(𝑅𝑅𝑅𝑅 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏|𝑔𝑔𝑔𝑔𝑔𝑔1 = 1,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1). The trace and estimated 

posterior are given in the figure below. 

 

 

 

 

In the top panel, 130 points are represented; the first 30 are greyed out, which 

corresponds to the points that have been deleted. Examination of the points at the beginning 
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show that at least two seem to be atypical of the sequence, which is the effect of the initialization 

to the BIFSG estimates. The bottom panel shows a density estimate from the last 100 points.   




