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AL-CoE: Who we are

Island
Sea Lab
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Housed at Dauphin Island Sea Lab our
mission is to provide results from innovative,
forward- looking research conducted on
areas of coastal concern to interested
members of government, academic
community, and the public.
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Multi-layered Approach:

Updating Scientific Capacity

T

/ Improve core infrastructure for \
experimentation and ocean
observation

< Upgrades to the Alabama Real-Time
Coastal Observation System (ARCOS)
(www.arcos.disl.edu)

< State of the Art Wetlab Facility for
multi-stressor experiments

(Innovated Monitoring Approaches

1

3 T


http://www.arcos.disl.edu/

AL-CoE: Timeline

DISL named
COE by AGCRC RFP 1 RFP 2
Released Released
S ADERR COVID Stay at , RFP 2 Projects
home orders RFP 1 Projects scheduled to

begin Begin begin

! I I
2019 2020 2021 2022 2023 2024

[
RFP 1 Awards Coming soon:
ALCOE Announced ARCOS Updates RZinzo’:;VCaefgs
Established Complete
® ®
Hurricane Sally Multi-stressor
impacts Wetlab online

Alabama Coast



Competitive Grant Program:

RFP1 Focus

4 Fund research investigating on the effects of multiple h

stressors, influenced by our changing climate, as they
affect the natural resources of the
northcentral Gulf of Mexico




Multi-layered Approach:

Grant Program

/ Using MS/AL Sea Grant Technical Review Panel \
approach

« Fund research focused on coastal vulnerability, resilience and
sustainability - looking at the past and current conditions to
inform predictions for the future (RFP1)

« Fund ‘proof of concept’ research that pushes the limits of
current research technologies (RFP2) /

\_




Competitive Grant Program:

RFP1

~N

"+ Amount of funding distributed = ~S4.4 million
- Average project cost: $435,000
- Total number of awards: 10

\_




RFP1:

Distribution of Funds

/ Funding across MESC Institutions \

Other: External Co-PI

Auburn U.

U. South Alabama

U. Alabama, Huntsville

U. Alabama, Birmingham |

Dauphin Island Sea Lab

U. Alabama

\_

Jacksonville State U.

W




Projects funded

{Groundwater quality/quantity \

o Citizen Science project using domestic well owners to
collect data to understand groundwater quality

0 Impacts of Sea Level Rise on Aquifer condition and coastal

resilience
01 Modeling ecosystem health, water resources and social

resilience using a holistic platform that integrates multi-scale
observations, machine learning and systems modeling using

\the past 30 years to predict the next 30 years. /




Projects funded

{Oyster fisheries under changing climate, specifically ocean \
acidification and warming

o Changes in quality and quantity of food source
0 Changes in oyster growth, survival and energetic trade offs

1 Impacts of Sea Level Rise on the Condition and Function of
Tidal Freshwater Forested Wetlands of the Mobile-Tensaw

Delta

W




Projects funded

(Living Shorelines & Nature-based Barriers Sustainability
with Sea Level Rise

and habitat use

0 Physical Determinants of Hypoxia on the Alabama Shelf

\_

o Impacts of coastal warming on manatee distributional patterns

\

/




Competitive Grant Program:

RFP2 Focus
éund projects that use emerging technologies to improve\
our efforts in support of integrated research, developing

predictions, forecasting change and improving the
affordability of data collection and monitoring in coastal
Alabama.




Competitive Grant Program:

RFP2

\_

- Amount of funding available = ~$1.5 million
- Average project cost: $150,000
- Total number of awards: up to 10

~N
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Thank you

This project was paid for [in part] with federal funding from the Department of the Treasury under the Resources and Ecosystems
Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012 (RESTORE Act). The statements,
findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the Department
of the Treasury or ADCNR




Modeling Alabama's Groundwater Sustainability and
Vulnerability: Connecting Past and Future

Yong Zhang (University of Alabama)

Chaloemporn Ponprasit (UA student) Co-PIs: Geoffrey Tick (UA)
Hossein Gholizadeh (UA student) Natasha Dimova (UA)
Olaoluwa Oluwaniyi (UA student) Erkan Nane (Auburn)
Bahareh Karimidermani (UA student)

Ponprasit, C., Zhang, Y., Gu, X., Goodliffe, A.M. and Sun, H., 2023. Assessing vulnerability of regional-
scale aquifer-aquitard systems in East Gulf Coastal Plain of Alabama by developing groundwater flow and
transport models. Water, 15(10), 1937. https://doi.org/10.3390/w15101937

THE UNIVERSITY OF

ALABAMA

Arts & Sciences




Goal: Groundwater Sustainability & Vulnerability

Objective 1: Southern Alabama groundwater sustainability
0 Model 1: GMS/MODFLOW
0 Model 2: Machine Learning Model (Neural Hydrology Network)
Model 3: Statistical Model (WTF & Wavelet Analysis)

Objective 2: Evolution of Alabama coastal groundwater quality
O Model 4: Seawater Intrusion Model (HGS)

0 Model 5: Groundwater Quality Model (LSTM vs WRTDS)

Objective 3: Southern Alabama groundwater vulnerability
O Model 6: Backward Particle Tracking Model (from ADE to fADE)

O Model 7: Vulnerability (Aquifers vs. Vadose Zone)
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(d Model 2: Machine Learning Model (Neural Hydrology Network/LSTM)

O Surface water using the Neural Hydrology Network

Surface water LSTM inputs

Precipitation

Solar radiation Rank (top 10)
Maximum temperature Surface water LSTM
Minimum temperature ——

Vapor pressure 1. Precipitation

Mean basin elevation 2. Permeability

Mean basin slope Basin area 3. Maximum temperature
Forest fraction . 4. Solar radiation

Maximum leaf area index (LAI)

Minimum LAI 5. Vapor pressure

LAI difference 6. Maximum water content
Maximum green vegetation 7. Minimum temperature
fraction (GVF) 8. Soil depth

g/girlu(ri;rt?l GVE 9. Carbonate rocks fraction
Soil porosity 10. Forest fraction

Soil conductivity
Maximum water content
Sand fraction
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Mean potential
evapotranspiration (PET)
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Snow fraction
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Gholizadeh, Zhang, Frame, Gu, and Green [Science of the Total Environment, 2023]



GW-LSTM
Groundwater hydrograph

GW-LSTM inputs
Precipitation Rank (top 5)
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L Model 3: Statistical Model (WTF)
Alabama Groundwater Storage Change U.S. Drought (https://droughtmo

N
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-1,914.24 - -1,000

Oluwaniyi, Zhang, Gholizadeh, Li, Gu, Sun, & Lu [Sustainability, 2023]
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O Model 4: Seawater Intrusion Model (HGS)
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Nitrate concentration (mg/L)

PFAS concentration (ppt or ng/L)

U Model 5: Groundwater Quality Model (LSTM vs WRTDS)

Nitrate concentration: calculated by the LSTM model (red line) vs. the observed data (symbols) at Tombigbee River and a well nearby.
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L Model 6: Backward Particle Tracking Model (from ADE to fADE)
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Zhang [ Water Resources Research, 2022]

Zhang, Brusseau, Neupauer, and Wei [Environmental Science & Technology, 2022]

Zhang [Journal of Hazardous Materials Advances, 2023]

Zhang, Fogg, Sun, Reeves, Neupauer, and Wei [Hydrology and Earth System Sciences, 2023]



0 Model 7: Vulnerability (Aquifer & Soil)
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THE SPATIOTEMPORAL PATTERNS
OF COMMUNITY VULNERABILITY
IN MOBILE BAY FROM 2000-2020



BACKGROUND

THE COASTAL REGION IS CONFRONTED WITH HEIGHTENED RISKS POSED BY CLIMATE CHANGE (IPCC
2022)

MOBILE RIVER BASIN (MRB) PROVIDES CRITICAL ECOSYSTEM SERVICES TO THE COUNTRY

THE COASTAL ECOSYSTEM OF MRB AND ITS ADJACENT COASTS ARE VULNERABLE TO ENVIRONMENTAL
STRESSORS INDUCED BY LOCAL HUMAN ACTIVITIES AND GLOBAL CLIMATE CHANGE.

COMMUNITY VULNERABILITY REFERS TO THE SUSCEPTIBILITY OF A COMMUNITY TO THE DAMAGING
EFFECTS OF A HAZARD (TATE, 2012)

EFFECTIVE MEASURE OF COMMUNITY VULNERABILITY IS COMPLICATED DUE TO THE COMPLEXITY OF THE
SELECTION AND WEIGHTING OF THE INDICATOR (BIRKMANN ET AL. 2013; CUTTER ET AL. 2008; 201 2).
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TABLE 1: SOCIAL VULNERABILITY COMPONENT SUMMARY

Census Factor Cardinality Name % Variance Dominant Factor
year explained variables loading
2000 F1 + Population & 43.11 Z_PopDen 0.864

Housing Z HousingDen  0.861

F2 + Wealth, Race & 15.03 Z Income -0.745
education Z_WhitePop -0.731

Z BlackPop 0.705

Z_NoSchoolC 0.795

F3 + Age 10.7 Z_Under5 -0.814
Z_Above65 0.826

2010 F1 + Wealth & Race 33.88 Z_Income -0.842
Z_WhitePop -0.697

Z_BlackPop 0.713

F2 + Population & 13.36 Z_PopDen 0.931
Housing Z HousingDen 0.936

F3 + Age 12.58 Z_Aboveb65 0.840
F4 + Gender (Female) 10.22 Z FemalePop 0.902
2020 F1 + Wealth & Race 31.79 Z Income -0.782
Z_WhitePop -0.780

Z_BlackPop 0.827

F2 + Population & 14.73 Z PopDen 0.891
Housing Z_HousingDen 0.883

F3 + Age 12.61 Z_Under5 -0.813
Z_Above65 0.767

F4 + Gender (Female) 10.75 Z FemalePop 0.840

—

e



Social Vulnerability Rank

B Very low
B Low

[ Moderate
9 High
B Very high
|

=l

Waterbodies
Mobile & Baldwin County

0 510 20Miles
T |

FIG. 2: SPATIAL DISTRIBUTION OF SOCIAL VULNERA ILITY(IN MOBILE BAYU 7



Socially Vulnerable Hotspot Social Vulnerability Clusters

Gi_Bin

Bl Cold Spot with 99% Confidence
m Cold Spot with 95% Confidence
Cold Spot with 90% Confidence
Not Significant

Hot Spot with 90% Confidence
Hot Spot with 95% Confidence
Hot Spot with 99% Confidence

B High-High cluster
High-Low outlier

Bl [ow-High outlier

B Low-Low cluster
Not significant

. Waterbodies

Waterbodies 1 Mobile & Baldwin County

Mobile & Baldwin County

O BRD

0 510 20Miles
T |

0 5 10 20 Miles
T |

8
[
FIG. 3 (A) SOCIALLY VULNERABLE HOTSPOTS (B) S@IA@.NERTY CLUSTE§n
o)







LULC changes to Urbanland
(2001-2019)

Barrenland to Urbanland
I Forestland to Urbanland
I Grassland ta Urbanland
I waterbodies to Urbanland
- Wetland to Urbanland

SoVI changes to High
(2000-2020)
[0 Low to High

[ Moderate to High

[ Mobile Bay

10 20 Miles




ALABAMA Department of Geography

EXPLORING THE INFLUENCE OF STAKEHOLDERS' OPINIONS
ON SELECTING AND WEIGHTING SOCIAL VULNERABILITY
INDICATORS IN FLOOD RISK MANAGEMENT

AUTHORS: *MD MUNJURUL HAQUE, WANYUN SHAO, *HEMAL DEY

*STUDENT COAUTHOR



BACKGROUND

THE PROCESS OF SELECTING AND ASSIGNING WEIGHTS TO INDICATORS IN DISASTER
MANAGEMENT VARIES AMONG STAKEHOLDERS AND HAS A DIRECT IMPACT ON THE
EFFECTIVENESS OF MEASURES (RECKNER AND TIER, 2023).
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RESEARCH QUESTION

HOW DO STAKEHOLDERS' OPINIONS INFLUENCE THE SELECTION AND WEIGHTING OF
COMMUNITY VULNERABILITY INDICATORS?
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SURVEY DESIGN

THE QUALTRICS SURVEY PLATFORM WAS USED TO COLLECT PRIMARY DATA FOR THIS STUDY.

THE PURPOSIVE SAMPLING TECHNIQUE WAS DEPLOYED AS THE TARGETED RESPONDENTS WERE
EMERGENCY MANAGERS, NGO STAFF, RESEARCHERS, METEOROLOGISTS, ECOSYSTEM MANAGERS.

THE TARGETED RESPONDENTS HAVE THE MOST UPDATED AND COMPETING KNOWLEDGE REGARDING
FLOOD MANAGEMENT IN THE SELECTED AREA.

A TOTAL OF 47 RESPONSES WERE RECORDED FROM FEBRUARY TO MAY 2023.



CONSIDERATION OF SOCIAL VULNERABILITY DURING
DECISION MAKING

W Always W Often #Sometimes © Rarely M Never



SOCIAL VULNERABILITY INDICATORS WITH THEIR IMPORTANCE

GEQGRAFPHIC LOCATION AND PEOXIMITYTO FLOOD-PRONE AREAS
(E.G.,LOW-LYING AREAS, PROXIMITY TO RIVERS OR COASTS)

ACCESS TO EMERGENCY SERVICES AND RESOURCES (E.G.,
AVAILABILITY OF EMERGENCY SHELTERS, ACCESS TO MEDICAL CARE)

LANGUAGE AND CULTURAL BARRIERS (E.G., LIMITED ENGLISH a4%
PROFICIENCY,LACK OF CULTURALLY APPROPRIATE RESOURCES)

ACCESSTO TRANSPORTATION AND COMMUNICATION INFRASTRUCTURE 56%
(E.G.,ROADS, BRIDGES, CELL PHONE COVERAGE)

HOUSING QUALITY AND AFFORDABRILITY (E.G.,ACCESS TO
AFFORDABLE AND SAFE HOUSING, RISK OF DISPLACEMEXNT)

HEALTH STATUS (E.G., PRE-EXISTING MEDICAL CONDITIONS,
DISABILITIES)

DEMOGRAPHIC CHARACTERISTICS (E.G., AGE, GENDER, INCOME,
EDUCATION)




VULNERABILITY MAPPING FACTORS
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FINDINGS

A TOTAL OF 90% OF RESPONDENTS STRONGLY AGREED THAT INDICATOR-BASED VULNERABILITY
ASSESSMENT MIGHT BE AN EFFECTIVE FLOOD MANAGEMENT TOOL.

88% OF STAKEHOLDERS PRIMARILY HIGHLIGHTED PAST HISTORIC FLOOD EXPERIENCES AND
GEOGRAPHIC LOCATION AS THE MOST CRUCIAL. THIS UNDERSCORES THEIR MEANINGFUL IMPACT ON
INDICATOR SELECTION.

GEOGRAPHIC LOCATION AND PAST HISTORIC EVENTS WERE THE MOST IMPORTANT SOCIAL
VULNERABILITY INDICATORS.



FUTURE RESEARCH

COMPARATIVE STUDIES ACROSS REGIONS OR COMMUNITIES MAY OFFER INSIGHTS INTO DIVERSE STAKEHOLDER
OPINIONS, ENABLING TAILORED APPROACHES TO FLOOD MANAGEMENT.

LONG-TERM RESILIENCE.

HOW DO POLICIES AND GOVERNANCE FRAMEWORKS AFFECT STAKEHOLDER INVOLVEMENT AND DECISION-
MAKING?2 WHAT ARE THE BEST WAYS TO INCORPORATE STAKEHOLDER OPINIONS INTO POLICY DEVELOPMENT?

INTERDISCIPLINARY RESEARCH CAN HELP US TO GAIN A HOLISTIC UNDERSTANDING OF HOW STAKEHOLDER
OPINIONS INFLUENCE FLOOD RISK MANAGEMENT.

20



REFERENCES

BIRKMANN, J., CARDONA, O. D., CARRENO, M. L., BARBAT, A. H., PELLING, M., SCHNEIDERBAUER, S., .. & WELLE, T. (2013).
FRAMING VULNERABILITY, RISK AND SOCIETAL RESPONSES: THE MOVE FRAMEWORK. NATURAL HAZARDS, 67, 193-211. 3

CUTTER, S. L, BARNES, L, BERRY, M., BURTON, C., EVANS, E., TATE, E., & WEBB, J. (2008). A PLACE-BASED MODEL FOR
UNDERSTANDING COMMUNITY RESILIENCE TO NATURAL DISASTERS. GLOBAL ENVIRONMENTAL CHANGE, 18(4), 598-6

CUTTER, S. L., BORUFF, B. J.,, & SHIRLEY, W. L. (2012). SOCIAL VULNERABILITY TO ENVIRONMENTAL HAZARDS. IN HAZARDS
VULNERABILITY AND ENVIRONMENTAL JUSTICE (PP. 143-160).

IPCC, (2022). SUMMARY FOR POLICYMAKERS [H.-O. PORTNER, D.C. ROBERTS, E.S. POLOCZANSKA, K. MINTENBECK, M. TIGNOR, A.
ALEGRIA, M. CRAIG, S. LANGSDORF, S. LOSCHKE, V. MOLLER, A. OKEM (EDS.)]. IN: CLIMATE CHANGE 2022: IMPACTS, ADAPTATION
AND VULNERABILITY. CONTRIBUTION OF WORKING GROUP Il TO THE SIXTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL
PANEL ON CLIMATE CHANGE, H.-O. PORTNER, D.C. ROBERTS, M. TIGNOR, E.S. POLOCZANSKA, K. MINTENBECK, A. ALEGRIA, M.
CRAIG, S. LANGSDORF, S. LOSCHKE, V. MOLLER, A. OKEM, B. RAMA (EDS.). CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE, UK AND
NEW YORK, NY, USA, PP. 3—-33, DOI:10.1017/9781009325844.001.

RECKNER, M., & TIEN, I. (2023). COMMUNITY-SCALE SPATIAL MAPPING TO PRIORITIZE GREEN AND GREY INFRASTRUCTURE
LOCATIONS TO INCREASE FLOOD RESILIENCE. SUSTAINABLE AND RESILIENT INFRASTRUCTURE, 8(SUPT1), 289-310.

21



: \-/ THE UNIVERSITY OF College of
</ A L A B A M A Arts & Sciences

THANK YOU!

* IF YOU HAVE ANY QUESTIONS, PLEASE CONTACT DR. WANYUN SHAO AT

* ACKNOWLEDGEMENTS
* THIS RESEARCH WAS SUPPORTED BY THE ALABAMA CENTER OF EXCELLENCE



mailto:wshao1@ua.edu

	AEH background Webinar
	Slide Number 1

	Valentine_TreasuryWebinar_Intro_20231109
	ALCoE_Zhang_v5
	Wanyun_Shao_Treasury_2023_Mobile
	Exploring different approaches to measuring community vulnerability in mobile bay
	The spatiotemporal patterns of community vulnerability in Mobile Bay from 2000-2020
	background
	Fig. 1: Study area map (a) administrative map of Mobile Bay (b) elevation map of Mobile Bay (c) location of study area and Alabama State in context of CONUS�
	Fig. 2: Methodological flowchart of this study
	Table 1: Social vulnerability component summary
	Fig. 2: Spatial distribution of social vulnerability in Mobile Bay
	Fig. 3 (a) socially vulnerable hotspots (b) social vulnerability clusters 
	Slide Number 9
	Slide Number 10
	Exploring the influence of stakeholders' opinions on selecting and weighting social vulnerability indicators in flood risk management
	Background
	Research Question�
	Survey Design
	Consideration of Social Vulnerability During Decision Making
	Social Vulnerability Indicators with their Importance
	Vulnerability Mapping Factors
	Block group-level vulnerability mapping
	Findings
	Future Research
	References
	Thank you!


