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1. Introduc�on 

 

 

 

 
 This monograph describes the Extended Regressions on Maturity Ranges (XRM) Yield Curve 
Methodology for construc�ng yield curves developed by the U.S. Department of the Treasury Office of 
Financial Analysis within the Office of Economic Policy. XRM is a general methodology for compu�ng 
yield curves for a wide variety of fixed income market sectors. 

 The first sec�on of this chapter sets out the dis�nguishing features of XRM and the second 
sec�on summarizes yield curves done by XRM that are currently published. The third sec�on outlines 
the subsequent chapters. 

 Much of the discussion in this monograph draws from and reproduces or quotes from parts of 
Girola (2007, 2010, 2011, 2014, 2015, 2016, 2019, 2022), as well as previous work on this methodology 
in U.S. Department of the Treasury (2005a, 2005b, 2006, and 2007). The monograph provides more 
informa�on about this material including detailed exposi�on of founda�ons and mathema�cal 
development. 

 

XRM Features 

 The XRM methodology is a general methodology that can be used to develop different types of 
yield curves for various sectors of fixed income markets. The methodology was invented to meet the 
need for a prac�cal yield curve approach that generates stable and accurate es�mates and that is 
grounded in a conceptual founda�on derived from established bond market characteris�cs. In the XRM 
methodology, the conceptual founda�on is based on maturity ranges, and the resul�ng es�mates are 
smooth and robust over �me regardless of the state of the bond market. Furthermore, the XRM 
methodology is also designed to fulfill addi�onal important requirements for yield curve es�ma�on that 
are o�en ignored by other approaches. 
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 The first of these addi�onal requirements is that the methodology must provide yield curves 
that realis�cally represent the various sectors of the U.S. corporate bond market as well as the market 
for U.S. Treasury securi�es. Most other yield curve approaches are aimed at Treasury securi�es. 
Corporate bonds, however, are much more heterogeneous than Treasuries, many have special features 
that must be taken into account, and there is o�en a large amount of random noise in corporate bond 
data that may obscure market behavior. Therefore, the methodology must be powerful enough to 
handle the complexi�es of corporate bonds as well as Treasuries.0F

1 

 Another important requirement is that the yield curve methodology must be able to combine 
corporate bonds of different quali�es from disparate markets into a single yield curve. The HQM yield 
curve that is described in this monograph, originally developed for pension funding as mandated by the 
Pension Protec�on Act of 2006 (PPA), Pub. L. 109-280, blends together high quality corporate bonds, 
that is, bonds rated AAA, AA, or A, into a single well-defined yield curve. As explained later, the HQM 
yield curve uses special regression variables to do the blending. 

 The requirement for the inclusion of regression variables in the HQM yield curve to combine 
quali�es is an illustra�on of the general requirement that the yield curve methodology must include 
regression variables as needed. These regression variables are in addi�on to the discount func�on in the 
methodology that is used to compute present values of future cash flows of bonds. 

 Regression variables are essen�al for capturing the special atributes of individual bonds. The 
conven�onal yield curve approach does not provide for regression variables and cannot be applied to 
bonds with special atributes. In addi�on to variables for combining markets in the HQM yield curve, the 
yield curves presented in this monograph include a hump regression variable described later for the 
bulge in yields that is o�en seen around 20 years maturity. 

 In addi�on to these requirements, there is the cri�cal requirement that the yield curve 
methodology must be able to project the yield curve results for indefinitely long maturi�es beyond the 
farthest maturity of the bonds used to construct the yield curve, and the projec�ons must be consistent 
with actual yields in bond markets. The projec�ons show what yields would be for such long-dated 
bonds even if these bonds don’t exist at the �me in markets. 

 In the case of the HQM yield curve, for example, pension liabili�es that need to be discounted by 
the yield curve can extend well beyond the 30 years maturity that is the maximum maturity of bonds 
used to es�mate HQM. Consequently, the HQM projec�on extends out for another 70 years maturity 
thereby providing yields for discoun�ng up through a total of 100 years maturity. The projected yields at 
such long maturi�es must be consistent with yields before 30 years maturity and must reflect market 
beliefs about long-term investment returns. 

 The requirement that the yield curve methodology generate good projec�ons is important for all 
yield curves, not just HQM, and is important even if the projec�ons are not actually used. This is because 
the projec�on of a yield curve extends the patern of yields in the bond set used to construct the yield 
curve to higher maturi�es beyond those in the bond set. Therefore, an effec�ve projec�on ensures that 
the patern of yields in the bond set has been accurately es�mated. 

 
1 An extended treatment of corporate bonds is contained in Fabozzi, ed. (2005). 
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 In addi�on to these requirements, there is the prac�cal requirement that a yield curve 
methodology used for actual applica�ons must produce reliable market indicators. This implies that yield 
curve es�mates have to be robust and stable with respect to random transitory perturba�ons in the 
market. Therefore, the es�mates cannot be unduly buffeted by market disturbances, and at the same 
�me the es�mates must capture all significant market movements. 

 In par�cular, in order to produce reliable results, it is important that the yield curve 
methodology is not subject to the cri�cism that it is arbitrary, in the sense that there are equally valid 
methodologies or equally valid ways of implemen�ng a given methodology that produce different results 
from the same data. Clearly, one cannot have confidence in an es�mate of a yield curve when there is 
another legi�mate es�mate of the yield curve that gives different results. 

 Yield curves can be arbitrary when they are derived from overly complicated models. This is 
because bond data may not show clear enough paterns to dis�nguish among compe�ng complicated 
models, with the result that choices among such models cannot be jus�fied empirically despite the fact 
that such choices can significantly affect results. 

 And especially, yield curves are arbitrary when there are free parameters in the methodology 
without a ra�onale for se�ng them. In that case, yield curve results depend upon the preferences of the 
analyst compu�ng the yield curve. 

 The XRM methodology is not arbitrary because it is grounded in analysis of bond markets that 
breaks bond trading into maturity ranges and derives mathema�cal equa�ons that represent each range. 
The choice and modeling of the maturity ranges implies the use of a cubic spline to capture all the 
ranges, and the specifica�ons of the spline are given by the maturity ranges. Therefore, the spline is not 
arbitrarily chosen in advance without jus�fica�on: rather, it arises naturally from the use of maturity 
ranges. 

 Furthermore, the cubic spline is constructed so that it includes mathema�cal constraints that 
ensure that the end of the spline at the farthest maturity 30 years of the bonds in the market can be 
carried forward to provide a projec�on that is consistent with bonds of less than 30 years maturity. 
Specifically, the calculated forward rate at 30 years maturity is held fixed indefinitely beyond 30 years 
maturity for the projec�on. 

 All of this is set out in detail in the following chapters. Maturity ranges ensure that XRM yield 
curve results are stable and robust, are not overly complicated or arbitrary, don’t have free parameters, 
and accurately reflect markets. 

 In sum, it can be seen from this discussion that the XRM methodology contains features that are 
not present in conven�onal yield curves. XRM methodology makes use of maturity ranges to produce 
stable and accurate yield curves. The ranges are derived from analysis of markets. 

 In addi�on, the XRM methodology constructs the yield curve so that it can be extended to 
higher maturi�es in order to project yields beyond the maturi�es of bonds trading in the market, and the 
projec�ons are consistent with actual bonds in the market. Yield curves done by XRM currently project 
yields beyond 30 years out through 100 years maturity, and the projected yields are consistent with 
yields up through 30 years maturity and with long-term returns provided in the market. 
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 Also, the XRM methodology includes regression variables in addi�on to the discount func�on to 
account for special characteris�cs of individual bonds. The regression variables make it possible to 
include different kinds of bonds in the same yield curve. And the hump variable, which is a regression 
variable, picks up movement in yields at longer maturi�es that are not part of the discount func�on. 

 Therefore, as its name indicates, the Extended Regressions on Maturity Ranges XRM 
methodology focuses on the maturity ranges and derives the yield curve using nonlinear regressions that 
are extended both to project yields beyond 30 years maturity and to take account of addi�onal bond 
characteris�cs by using special regression terms. 

 The XRM methodology can be compared to other approaches. One well-known approach is 
presented in Nelson and Siegel (1987) and Svensson (1994).1F

2Well-known spline approaches include the 
generalized cross valida�on (GCV) approach with smoothing splines of Fisher, Nychka, and Zervos 
(1995).2F

3 

 

XRM Yield Curves 

 The purpose of the XRM methodology is to produce yield curves. Yield curves have many 
applica�ons. The primary types of yield curves currently done by XRM are par yield curves and spot yield 
curves, and the later are cri�cal in funding applica�ons for pensions and other programs that pay cash 
flows in the future. 

 A yield curve provides informa�on about a par�cular bond market sector at a point in �me, 
including informa�on about yields in the sector at different maturi�es. Yield curves can also provide 
addi�onal informa�on and sta�s�cs about the sector, and the XRM methodology produces an extensive 
set of such informa�on. 

 Currently there are three sectors for which yield curves are done by XRM. These yield curves are 
set out in the following two chapters. 

 The first sector for which XRM produces a yield curve is the corporate bond high quality market. 
This sector comprises U.S. corporate bonds that are in the top three credit quali�es A, AA, and AAA. The 
yield curve for this sector is termed the High Quality Market (HQM) Yield Curve, and it is the original 
yield curve that mo�vated the development of the XRM methodology. 

 In addi�on to the HQM yield curve, XRM produces the Treasury Nominal Coupon-Issue (TNC) 
Yield Curve that pertains to the fixed income sector comprising U.S. Treasury nominal coupon issues, 
both notes and bonds. Nominal Treasury coupon issues provide principal and interest cash flows in 
nominal dollars. Nominal Treasuries are some�mes called regular Treasuries. 

 And third, there is the sector comprising U.S. Treasury Infla�on-Protected Securi�es or TIPS. The 
XRM yield curve for this sector is called the Treasury Real Coupon-Issue (TRC) Yield Curve. TIPS notes and 

 
2 An applica�on of the Svensson approach to the U.S. Treasury market is presented in Gürkaynak, Sack, and Wright 
(2007a and 2007b). 
3 See also Fisher and Zervos (1996). 
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bonds provide principal and interest payments in real terms, and payments are converted to dollars 
using the not seasonally adjusted Consumer Price Index for All Urban Consumers (CPI-U).3F

4 

 The first two of these yield curves, HQM and TNC, are called nominal yield curves because they 
provide results in nominal or dollar terms. The TRC yield curve is called a real yield curve because its 
results are in real terms. 

 In addi�on, a fourth curve is also done, and this is called the Treasury Breakeven Infla�on (TBI) 
Curve. This curve combines the TNC and TRC yield curves to calculate breakeven infla�on. 

 The XRM methodology computes yield curves for these sectors by developing price equa�ons 
for the sectors. For each sector, the price equa�on shows the price of a bond in that sector as a func�on 
of the bond’s future payments and other informa�on. 

 These price equa�ons are es�mated from sets of bonds made up of bond data for Treasury 
notes and bonds and bond data for corporate bonds. The bond data are mostly comprised of bonds 
whose characteris�cs are similar to Treasuries, including payment of coupons. In this discussion, such 
bonds are termed standard bonds, and they are described in detail in Chapter 4. 

 Using the price equa�ons computed from the sets of bonds, the XRM methodology can generate 
an array of bond sta�s�cs, including prices of bonds with different features as func�ons of the bond cash 
flows, and, inversely, different streams of cash flows that are consistent with specified prices. 

 In par�cular, with the price equa�ons, XRM can generate various types of yield curves. This 
monograph focuses on two types of yield curves: the par yield curve and the spot yield curve. Both yield 
curves are described in detail in succeeding chapters. Because the price equa�ons are es�mated from 
standard bonds, the resul�ng yield curves are consistent with standard bonds. 

 The par yield curve shows yields for standard bonds trading at par. These bonds can be called 
standard par bonds, and they comprise standard bonds whose flat price (excluding accrued interest) is 
equal to principal. Par yield curves have many uses including pricing of new bonds and as indicators of 
the state of financial markets. 

 The spot yield curve shows yields for nonstandard bonds that provide single payments at 
maturity, that is, zero coupon bonds with no coupon payments. The yields are called spot rates. Even 
though the zero coupon bonds are nonstandard, the spot rates are computed from the par yield curve 
and therefore the spot rates are calculated so as to be consistent with the par yield curve for standard 
bonds. 

 In addi�on, each price equa�on generates a long-term forward rate, which is the projected 
average forward rate for bond maturi�es above 30 years which is the usual maximum maturity for bonds 
that exist in markets. The long-term forward rate can then be used to project the par and spot yield 
curves out beyond 30 years maturity and the projec�ons are consistent with market results up through 
30 years maturity. The long-term forward rate is defined and described in detail in succeeding chapters. 

 
4 In earlier work Girola (2005 and 2006), the XRM methodology was used to construct yield curves for TIPS which 
were then used to project the real return on Treasury securi�es for Social Security. 
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It is the average forward rate in the farthest maturity range as defined later, and is held fixed for all 
maturi�es above 30 years. 

 One of the principal uses of spot rates is to discount future cash flows. This was the original 
purpose in developing the HQM yield curve for the Pension Protec�on Act. Each cash flow is discounted 
by the spot rate whose maturity is the same as the �me when the cash flow is paid, and this gives the 
present value of the cash flow. Summing up the present values of the cash flows gives the amount of 
money that must be put aside at present to fund the future cash flows. For a pension plan, this is the 
present funding of future pension payments. 
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Spot Yield Curves for April 2024 

 As a preview of the following chapters, the next figure shows the monthly average spot yield 
curves for April 2024 for the three yield curves HQM, TNC, and TRC. Each spot yield curve is the average 
of the 22 business days in April, and each is ploted for the 200 maturi�es ½ year up through 100 years. 
The values above 30 years maturity are the projec�on range. 

Figure 1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Each of the three yield curves starts high at ½-year maturity and declines, reflec�ng the federal 
funds rate in April at 5¼ percent or above. The yield curves have humps: the HQM hump is at 20 years 
maturity, and the TNC and TRC humps are both at 20½ years maturity. 

 The yield curves gently rise in the projec�on range. The HQM yield curve starts at 5.59 percent 
at 30 years maturity and rises to 5.64 percent at 100 years maturity. The TNC yield curve starts at 4.64 
percent at 30 years maturity and rises to 4.87 percent at 100 years maturity. And the TRC yield curve in 
real terms starts at 2.32 percent and rises to 2.41 percent at 100 years maturity. 

 The TRC yield curve is posi�ve in April. This does not always happen and TRC can be nega�ve. In 
contrast, HQM and TNC, being nominal yield curves, are expected to be posi�ve. 
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Outline of the Chapters 

 This sec�on outlines the rest of the chapters. 

 The next two chapters discuss the development of the XRM methodology and the yield curves to 
which it is currently applied. Chapter 4 describes in detail the bond sets and the standard bonds that are 
used for XRM es�ma�on. 

 Chapter 5 describes the discount func�on and companion forward rate, which are building 
blocks for construc�ng bond price equa�ons. And Chapter 6 uses the discount func�on to write down 
the conceptual form of the price equa�on. 

 Chapters 7-9 develop the mathema�cal form of the price equa�on that makes specific the 
conceptual price equa�on so that it can be used for es�ma�on. Chapter 7 discusses the fundamental 
concept of maturity ranges that is the founda�on of the XRM methodology. Chapter 8 summarizes basic 
features of B-splines that are applied to the maturity ranges in order to set up the spline func�on for 
es�ma�ng the price equa�on. And Chapter 9 extends the B-splines to enable projec�on of yields out 
through 100 years maturity. 

 Chapters 10-12 describe the regression variables that are currently being using in XRM. Chapter 
10 presents the hump variable that is used in all the XRM yield curves to account for the hump in yields 
of standard bonds o�en seen around 20 years maturity. Chapter 11 describes the HQM credit variables 
that blend together corporate bonds of A, AA, and AAA quali�es into a single yield curve. And Chapter 12 
discusses the variables for on-the-run Treasuries and variables for historical Treasuries. 

 Chapter 13 outlines es�ma�on techniques. Chapter 14 describes the computa�on of the par and 
spot yield curves from the price equa�ons out through 100 years maturity, including forward spot rates. 
And Chapter 15 describes the computa�on of breakeven infla�on from the TNC and TRC yield curves. 

 Finally, Chapters 16-18 present selected results from the yield curve computa�ons including 
figures. These chapters provide illustra�ons of the concepts discussed in previous chapters and 
demonstrate prac�cal results that show how the concepts are used. 

 

  



12 
 

 

 

2. Development of the HQM Yield Curve 

 

 

 

 
 This chapter shows how the required applica�ons of the yield curves led to the special features 
in the XRM methodology that are applied to the HQM yield curve. 

 For the three sectors listed in Chapter 1, the first yield curve done was the HQM yield curve for 
high quality corporate bonds. The mo�va�on for HQM was the Pension Protec�on Act of 2006 that 
mandated a yield curve for funding of single-employer pension plans. 

 

The Pension Protec�on Act 

 The Pension Protec�on Act of 2006 (PPA), Pub. L. 109-280, signed into law on August 17, 2006, 
mandated that spot rates from a high quality corporate bond yield curve must be used to discount 
actuarial es�mates of future pension payments from single-employer pension plans for the purpose of 
determining required funding of these plans. 

 This mandate was a significant innova�on in pension funding: previously, discoun�ng had been 
done by a single fixed interest rate. At the �me of the PPA, much of the discussion focused on the fact 
that use of a yield curve would allow pension plans to adjust pension funding based on the age of their 
workforce. Of course, use of a yield curve allows funding to reflect all kinds of condi�ons in addi�on to 
age. 

 Although the proposal to use a yield curve was widely applauded at the �me, there was s�ll the 
problem of which yield curve to use. This was especially true because, unfortunately, yield curve 
technology at the �me was unable to produce a suitable yield curve. The technology wasn’t grounded in 
market characteris�cs such as maturity ranges with the result that available yield curve approaches at 
that �me gave different results with no way to choose among them: the approaches were arbitrary. 
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 Also, the available approaches frequently produced unacceptable nega�ve nominal interest 
rates or interest rates with spurious movements, especially at long maturi�es, and such results were 
inconsistent with markets. Another problem was that the approaches were o�en numerically ill-
condi�oned such that they gave mul�ple results or didn’t converge at all giving no result. 

 In view of these problems, there were concerns that a workable yield curve for pension 
discoun�ng could not be developed. And to make maters more difficult, the PPA included addi�onal 
challenges in its requirements for the yield curve. 

 First, the yield curve mandated by the PPA was for corporate bonds rather than Treasury 
securi�es. Most yield curve work at that �me had been centered on Treasuries. As discussed in the 
previous chapter, corporate bonds have many special complexi�es that Treasuries don’t have, greatly 
increasing the difficulty in formula�ng a successful yield curve. 

 Moreover, the PPA mandated the use of a single yield curve blending together corporate bonds 
rated A, AA, and AAA in an average. There existed no approach to calculate a single yield curve like this. 
Furthermore, the PPA mandated the use of zero coupon spot rates rather than yields on bonds with 
coupons, and therefore a complete set of spot rates had to be es�mated that accurately reflect market 
condi�ons despite the fact that there does not exist a fully developed zero coupon corporate bond 
market. There was no way to do this either. 

 Finally, it was necessary to project spot rates out through 100 years maturity because many 
pension liabili�es extended well beyond the 30 years maturity that was the usual maximum for actual 
bonds in markets. Again there was no way to do this. At the �me, it was considered normal simply to use 
the yield at 30 years maturity for yields beyond 30 years even though the 30-year yield was usually 
biased down. 

 

HQM Features for the PPA 

 The purpose of the HQM yield curve was to solve all these problems, both general problems of 
yield curve construc�on and problems arising from the specific requirements of the PPA, and to provide 
a new yield curve methodology that would be accurate and acceptable to users in the business and 
pension communi�es. The features of the HQM yield curve using the XRM methodology accomplish this 
purpose. 

 The star�ng point for HQM is the use of bond market analysis to derive the maturity ranges. The 
ini�al reason why other yield curve approaches are inaccurate is that they aren’t grounded in market 
analysis. 

 Consequently, the HQM yield curve is jus�fied by market analysis and is not arbitrary. 
Furthermore, the maturity ranges generate robust yield curve es�mates that are well-condi�oned, 
converge rapidly, and are not affected by market instabili�es. The es�ma�on technique for HQM is a 
custom-writen algorithm that is stable regardless of star�ng point. 

 Moreover, the requirement that the HQM yield curve be able to produce reliable projec�ons out 
through 100 years maturity constrains the yield curve results to be economically reasonable and 
eliminates the problem of nega�ve nominal interest rates at long maturi�es. 
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 And to sa�sfy the challenges imposed by PPA requirements, the XRM methodology is sufficiently 
robust that it can be applied effec�vely to corporate bonds using bond sets comprising thousands of 
securi�es with significant random movements and noise. This is currently being done in the HQM yield 
curve. The HQM credit regression variables described later enable HQM to blend together into a single 
yield curve the corporate bonds rated A, AA, and AAA. And the XRM yield curve technology enables spot 
rates to be li�ed out of HQM es�mates derived from standard bonds with coupons, and these spot rates 
are consistent with bond markets even though a fully developed corporate zero coupon bond market 
doesn’t exist. 

 As a result, the HQM yield curve solves the general problems of yield curve construc�on that 
prevented accurate yield curve results 20 years ago, and also meets the requirements of the PPA. 

 The HQM yield curve was first published in Internal Revenue Service (IRS) No�ce 2007-81 
containing data for August 2007. As of this wri�ng, the HQM yield curve is published in U.S. Department 
of the Treasury (2024a) and also published on the Internal Revenue Service website. Results are 
published every month and include monthly average and end of month spot rates and selected par 
yields. All results are projected out through 100 years maturity. 

 When first introduced in connec�on with the PPA, the HQM yield curve went back through 
October 2003. The HQM yield curve was carried back farther through January 1984 as mandated by the 
Moving Ahead for Progress in the 21st Century Act of 2012 (MAP-21). Although at present published 
results are monthly, the yield curve is actually es�mated daily for each business day back through 1984. 

 As men�oned, the HQM yield curve contains the two credit variables that enable the blending of 
high quality bonds of different credit quali�es. In February 2024 the hump variable was added to HQM. 
Also in February 2024, standard bonds with end calls, described in Chapter 4, were also added, and this 
addi�on greatly increased the number of bonds used for es�ma�on. 

 

 The next chapter describes the TNC and TRC yield curves, which are the other two XRM yield 
curves discussed here. 
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3. The Suite of Treasury Yield Curves 

 

 

 

 
 Building on the success of the HQM yield curve, the Office of Economic Policy was asked to 
extend the HQM yield curve to Treasury securi�es because more Treasury yield curve data were needed 
for required applica�ons. The result was the TNC yield curve for nominal Treasuries, followed by the TRC 
yield curve for TPS and the TBI curve that uses TNC and TRC in combina�on to derive breakeven 
infla�on. 

 The reasons why new Treasury yield curves were needed were similar to the reasons for crea�ng 
the HQM yield curve: 

 First, more accurate Treasury yield curves were needed that beter capture market behavior than 
other approaches. The use of maturity ranges significantly increases accuracy. 

 In addi�on, applica�ons such as government pensions need projec�ons out through 100 years 
maturity. The use of the XRM projec�on methodology provides such projec�ons as it does for the HQM 
yield curve. 

 Also, there is the requirement for regression variables for a variety of reasons. Both the TNC and 
TRC yield curves use the hump regression variable for beter es�mates. 

 In sum, the use of the XRM methodology for Treasury yield curves generates accurate par yields 
from which can be derived spot rates. Spot rates are a cri�cal requirement in applying Treasury yield 
curves to the discoun�ng of future government liabili�es. 

 

The TNC Yield Curve 

 The TNC yield curve pertains to nominal Treasury coupon issues, both notes and bonds, so it is a 
nominal yield curve. The TNC yield curve originally went back through 2003 and was extended back 
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through 1976 to give a half century of data. The TNC yield curve is published on the Main Treasury 
website at U.S. Department of the Treasury (2024b). Similar to the HQM yield curve, the website 
publishes monthly average and end of month spot rates for TNC projected out through 100 years 
maturity and selected par yields. The TNC yield curve is es�mated daily the same as HQM. 

 An important feature of the TNC yield curve is that it uses all nominal Treasury coupon issues 
that have been issued, no issues are omited. At the present �me, when-issued Treasuries are not 
included. 

 The use of all Treasury coupon issues is in contrast to conven�onal yield curve approaches that 
omit on-the-run Treasuries, and omit callable Treasuries and flower bonds from historical data. Because 
the TNC yield curve uses all coupon issues, it is an extensive dataset of Treasury yields available over the 
last half century. 

 As discussed in Chapter 12, special regression variables are included in historical yield curves to 
account for callable Treasuries and flower bonds. Conven�onal yield curves that omit callables leave out 
a substan�al amount of historical data especially at long maturi�es for the early period 1976-1984. 
Callables and flower bonds no longer exist. 

 As discussed in later chapters, the TNC yield curve uses the same maturity ranges as HQM, the 
same constrained B-splines, and the same hump variable. The TNC yield curve doesn’t have the two 
HQM credit variables because Treasuries are default risk free. 

 The TNC yield curve comprises all issued coupon issues including on-the-run. Conven�onal yield 
curves for Treasury securi�es omit the on-the-run and first off-the-run because the prices of these 
securi�es are considered to be subject to special liquidity and other influences and cannot be mixed in 
with off-the-run securi�es. In contrast, the TNC yield curve includes all these securi�es and includes 
dummy variables for on-the-run and first off-the-run: Chapter 12 discusses the dummies. 

 The presence of the dummies in effect removes on-the-run securi�es from the yield curve 
es�ma�on, with the result that the TNC yield curve is off-the-run, that is, it pertains to the market for 
off-the-run Treasury securi�es. Nevertheless, the dummies s�ll produce es�mates of on-the-run effects 
on price that generate on-the-run yields to be contrasted with off-the-run. The webpage with TNC data 
cited above contains selected on-the-run es�mated yields. 

 In addi�on, it should be noted that another important applica�on of TNC spot rates is that these 
spot rates are indicators of nominal social rates of �me preference. This is because these spot rates are 
default risk free, and they are off-the-run without on-the-run influences. Therefore, the aggregate 
preference of society is indifferent between a future cash flow and its present value discounted by TNC. 
One applica�on of social �me preference is to help make decisions about public construc�on and 
infrastructure. 
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The TRC Yield Curve 

 The TRC yield curve pertains to real Treasury coupon issues or TIPS, both notes and bonds, so it 
is a real yield curve. The TRC yield curve goes back through 2003 when the TIPS market became 
sufficiently established to provide stable results, so the TRC yield curve provides almost a quarter 
century of data. The TRC yield curve is published on the Main Treasury website at U.S. Department of 
the Treasury (2024b). Similar to the TNC yield curve, the website publishes monthly average and end of 
month spot rates projected out through 100 years maturity and selected par yields for TRC all in real 
terms. As with HQM and TNC, the TRC yield curve is es�mated daily. 

 Analogous to TNC, the TRC yield curve uses all real Treasury coupon issues that have been 
issued. In contrast to nominal Treasuries, there are no special features atached to on-the-run real issues, 
so no dummy variables are used in TRC. 

 As shown in later chapters, the TRC yield curve uses the same maturity ranges as HQM and TNC, 
the same constrained B-splines, and the same hump variable. As will become apparent, the 
mathema�cal structure of the constrained B-splines plus hump variable is a standardized structure that 
fits well all fixed income securi�es of high quality credit over the last half century. 

 The TRC yield curve doesn’t have the two HQM credit variables because Treasuries are default 
risk free. So for regression variables, the TRC yield curve has only the hump variable. 

 Similar to TNC, TRC spot rates are indicators of social rates of �me preference, where in the case 
of TRC, the �me preference is real rather than nominal. Analogous to TNC, TRC spot rates have no on-
the-run influences and are risk free. Therefore, the aggregate preference of society is indifferent 
between a future cash flow in real terms and its present value discounted by TRC. 
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The TBI Curve 

 The TBI curve combines the TNC and TRC yield curves to derive breakeven infla�on. This curve 
goes back through 2003 same as TRC. TBI data are published on the Main Treasury website at U.S. 
Department of the Treasury (2024b). Breakeven infla�on is discussed in Chapter 15. 

 The TBI curve is more accurate than conven�onal calcula�ons of breakeven infla�on for several 
reasons. First, conven�onal breakeven calcula�ons use on-the-run nominal Treasuries while TBI rates use 
the TNC curve which is off-the-run. Therefore, TBI is not distorted by on-the-run influences. Moreover, 
the algebraic formula for compu�ng breakeven infla�on is correctly applied in TBI, whereas conven�onal 
calcula�ons typically simply subtract real Treasuries from nominal Treasuries. 

 However, the most important reason why TBI rates are more accurate is that TBI uses spot rates 
for nominal and real Treasuries while conven�onal calcula�ons use yields with coupons. Spot rates are 
the correct interest rate measure for breakeven infla�on because breakeven infla�on is intended to 
represent the infla�on rate over a �me span that provides equal returns for nominal and real Treasuries, 
and calcula�on of equal returns from one point in �me to another requires spot rates. 

 Consequently, it appears that a large part of the apparent inaccuracy in conven�onal breakeven 
infla�on calcula�ons is eliminated when the calcula�on is done correctly using spot rates rather than 
yields. 

 

 

 The next chapter discusses bond sets to be used by XRM to es�mate price equa�ons and yield 
curves. 
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4. Bond Structure 

 

 

 

 
 The star�ng point for the applica�on of the XRM methodology is the choice of the set of bonds 
for which the yield curve will be done. Based on the characteris�cs of this bond set, XRM sets up a price 
equa�on and es�mates the price equa�on from the bond set. Yield curves and other sta�s�cs will be 
derived from the es�mated price equa�on. For the three yield curves discussed, HQM, TNC, and TRC, 
there will be three respec�ve bond sets for three price equa�ons. This chapter describes the bond sets. 

 For each of the three yield curves, the bonds in each bond set are based on what are here 
termed standard bonds. Standard bonds, defined in detail below, are bonds that look like Treasury 
coupon issues: they have a fixed maturity, pay a fixed coupon semiannually, and have no addi�onal 
characteris�cs such as embedded op�ons. Standard bonds are the founda�on class of bonds trading in 
U.S. bond markets, and other classes of bonds are analyzed and traded rela�ve to standard bonds. By 
focusing on standard bonds, the resul�ng yield curve es�mates are consistent with fundamental yields 
and returns that underlie U.S. bond markets. The concept of standard bonds has been developed in the 
Office of Financial Analysis. 

 The bond sets for the three yield curves also include nonstandard bonds as discussed below, but 
at the present �me the nonstandard bonds are chosen so as to be closely related to standard bonds. The 
bond sets avoid nonstandard bonds because nonstandard bonds are frequently priced differently from 
standard bonds and may require addi�ons to the price equa�on such as special regression variables. 
Furthermore, nonstandard bonds o�en include other features that affect their prices, again requiring 
addi�onal regression variables. Fortunately, there are more than enough standard bonds and closely 
related bonds that the bond sets for the yield curves can produce accurate es�mates of fundamental 
bond market behavior. 
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 The first three sec�ons discuss standard bonds and the following sec�ons discuss bonds included 
in the yield curves. Also discussed are concepts of yield that will apply to the yield curve formulas in 
Chapter 14. 

 

Standard Bonds 

 This sec�on sets out the characteris�cs that define standard bonds. The defini�on is given in 
detail because bonds can be complicated, especially corporate bonds, and the bonds used for the yield 
curves need to be clearly described. In par�cular, it’s necessary to derive from the bond set the essen�al 
features of each bond that are needed for the es�ma�on process. The discussion in the rest of this 
chapter is meant to set out these features conceptually. The discussion applies to all standard bonds. 

 In considering bond features, it must be stressed that each bond has atached to it an end of 
month conven�on that determines whether or not the bond pays cash flows at end of month, and a day 
count conven�on that determines how to calculate days between dates. Therefore, in calcula�ng the 
concepts described below such as length of half-years and accrued interest for a par�cular bond, the 
conven�ons for that bond should be used.The concepts set out here provide the guide to what 
informa�on is needed from each bond for yield curve es�ma�on. 

 The two typical day count conven�ons are actual/actual for Treasuries using actual days and 
30/360 or some variant for corporate bonds using a 360-day year and 30-day months. These conven�ons 
can give different results in actual computa�ons. It would be too much of a digression to describe these 
conven�ons in detail; the references provide details on these conven�ons as well as more informa�on in 
general about the material in this chapter.4F

5 

 Standard bonds are straigh�orward. A standard bond has a fixed accrual date when interest 
starts to accrue and a fixed maturity date when the principal is repaid and the bond expires. For analysis, 
the size of the bond is scaled so that the principal equals 100. The �mespan from accrual date to 
maturity date is divided into 𝑛𝑛� coupon periods, with the requirement 𝑛𝑛� ≥ 3 to make sure the market 
trades it as a bond rather than as cash. 

 Each of the 𝑛𝑛� coupon periods has a length in half-years denoted as ℎ��̌�𝚤, 𝚤𝚤̌ = 1, … ,𝑛𝑛�, where a half-
year is the �me period of half a year. Regular coupon periods have a length of one half-year, and because 
all the coupon periods are required to be regular except the first and last, all the intermediate coupon 
periods have lengths of one half-year: ℎ��̌�𝚤 = 1, 𝚤𝚤̌ = 2, … ,𝑛𝑛� − 1. 

 The first coupon period is said to be regular if its length in half-years ℎ�1 = 1 too. If it has a 
different length, it’s called odd, and it’s short if its length ℎ�1 < 1 and long if ℎ�1 > 1. Analogously, if the 
last coupon period is regular, ℎ�𝑛𝑛� = 1; otherwise the last coupon period is odd, in which case ℎ�𝑛𝑛� < 1 if 
the last coupon period is short and ℎ�𝑛𝑛� > 1 if it’s long. 

 At one �me Treasury securi�es could have odd first coupon periods, but no longer: all the 
coupon periods of Treasuries currently being traded are regular. In contrast, corporate bonds can have 

 
5 References for informa�on about bonds and yields include Garbade (1996), Krgin (2002), and S�gum and 
Robinson (1996). 
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odd first or last coupon periods. Also, with rare excep�ons the term of a Treasury security is given by 𝑛𝑛�
2

, 
so a 10-year Treasury note has 𝑛𝑛� = 20. 

 Payments from a standard bond are determined by a fixed annual coupon rate 𝜅𝜅 that is paid per 
year on each 100 of principal. The coupon rate is strictly posi�ve: 𝜅𝜅 > 0. The coupon rate can’t be zero 
because standard bonds pay a coupon, they are not zero coupon. And even though theore�cal coupon 
rates can be nega�ve as discussed in Chapter 14, actual bonds in the market always have a posi�ve 
coupon. 

 Based on the coupon rate 𝜅𝜅, a standard bond provides a payment �̌�𝑐�̌�𝚤 on the last day of each 
coupon period, which day is called the coupon payment date or the coupon anniversary date. The 
amount of the payment is calculated as half the coupon rate for each half-year of the coupon period. In 
addi�on, the principal of 100 is paid back on the last day of the last coupon period which is the same as 
the maturity date. The payment scheme is as follows, taking into account odd coupon periods. The 
amount of the coupon rate paid for a regular coupon period is called a regular coupon, and the amount 
paid for an odd coupon period is called an odd coupon which can be a short or long coupon: 

 

                                                             �̌�𝑐�̌�𝚤 = ℎ��̌�𝚤
𝜅𝜅
2

, 𝚤𝚤̌ = 1, … ,𝑛𝑛� − 1     (4.1a) 

                                                             �̌�𝑐𝑛𝑛� = ℎ�𝑛𝑛�
𝜅𝜅
2

+ 100      (4.1b) 

 A standard bond has no other features, so this completes the defini�on of a standard bond. In 
par�cular, a standard bond has no embedded op�ons, floa�ng coupons, or anything else. 

 

Price and Cash Flows 

 Each price equa�on is es�mated using a bond set that is traded on a par�cular day and has that 
day’s date atached to the price equa�on. The resul�ng yield curve is referred to by the same date. 
However, even though the bond set is traded on that day, the actual payment for and transfer of 
ownership of the bonds occurs a bit later on the setlement date. As of this wri�ng, the setlement date 
is one business day a�er the date of trade for the bond sets discussed here. 

 Also, for each bond in this discussion, the setlement date must be the same date as or a�er the 
issue date of the bond. At the present �me, the yield curves including the Treasury yield curves do not 
include when-issued bonds. 

 And finally, the issue date of the bond must be the same as or a�er the accrual date of the bond. 
This means that interest must start accruing on the bond before or at the same �me as the setlement 
date. 

 The next step is to examine trading of a standard bond on a par�cular day with setlement a 
business day later. The first thing is to lay out the remaining coupon periods of this bond at the �me of 
setlement. If the setlement date is the same as the accrual date, the remaining coupon periods are the 
same as the original periods. However, if the bond is setled a�er the accrual date, there could be fewer 
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coupon periods le� before the bond’s maturity and the first coupon period remaining may be shorter 
than the original coupon period. 

 Let the lengths in half-years of the remaining coupon periods be designated as ℎ��̃�𝚤, 𝚤𝚤̃ = 1, … ,𝑛𝑛�, 
with 𝑛𝑛� ≤ 𝑛𝑛�.The last 𝑛𝑛� − 1 coupon periods are the same as the original, but the length of the first 
remaining coupon period ℎ�1 may be less than the length ℎ� of the original coupon period that contains it.  

 The price of this bond excluding accrued interest, called the flat price or clean price, is denoted 
as 𝑝𝑝FLAT, with 𝑝𝑝FLAT > 0. The amount of accrued interest on the bond is (ℎ� − ℎ�1) 𝜅𝜅

2
. Therefore, the full 

or dirty price of the bond, designated 𝑝𝑝, is given as: 

                                                                  𝑝𝑝 = 𝑝𝑝FLAT + �ℎ� − ℎ�1�
𝜅𝜅
2
     (4.2) 

 For payments, the traded bond pays 𝑛𝑛 cash flows 𝑐𝑐𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛, at the end of the coupon 
periods, with 𝑛𝑛 = 𝑛𝑛� . The number of years from the setlement date to the payment of each cash flow is 
designated by ℎ𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛, given as: 

                                                                              ℎ𝑖𝑖 = ∑ ℎ�𝑖𝑖′
2

𝑖𝑖
𝑖𝑖′=1      (4.3) 

 So the payments 𝑐𝑐𝑖𝑖 are assumed to be done on the last days of their respec�ve coupon periods. 
However, this assump�on ignores weekends and holidays, because payments are actually done on the 
next business day following a weekend or holiday5F

6. So to be more precise about payment dates, 𝜏𝜏𝑖𝑖 can 
be defined as the number of years to actual payment date given as the number of days from the 
setlement date to the actual payment date divided by 365.25 represen�ng the average number of days 
in a year including leap years. The value 365.25. is approximate but close enough for prac�cal 
applica�ons. 

 In sum, a traded bond for inclusion in a yield curve is represented by 3𝑛𝑛 + 1 values including its 
price 𝑝𝑝, the 𝑛𝑛 cash flows 𝑐𝑐𝑖𝑖, the 𝑛𝑛 years to ends of coupon periods ℎ𝑖𝑖, the 𝑛𝑛 years to payment 𝜏𝜏𝑖𝑖, and any 
addi�onal informa�on needed to define the regression variables. Addi�onal informa�on could include 
ra�ngs for corporate bonds. Armed with these concepts, the next sec�on computes yields on traded 
standard bonds. 

 

 

 

 

 

 

 

 
6 Because trading of issued bonds is done in private markets, Good Friday is here included as a holiday. See 
Dershowitz and Reingold (1997) for the mechanics of calcula�ng the date of Good Friday. 
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Yields 

 This sec�on sets out bond yield formulas that will be used later in compu�ng yield curves. Note 
that different presenta�ons use different terminologies for these formulas; the scheme here is meant to 
be consistent with nota�on for yield curves later. Following market prac�ce, all these formulas will use 
semiannual compounding. 

 The first yield formula�on is for 𝑦𝑦CURR o�en call current yield. This is included for comparison 
because current yield doesn’t have much use in yield curves: 

                                                                          𝑦𝑦CURR = 100 𝜅𝜅
𝑝𝑝

      (4.4) 

 A more useful concept is yield to maturity, or frequently simply referred to as yield. The 
following formulas for yield to maturity follow the usual market conven�on for yield calcula�ons that 
ignores weekends and holidays and uses half-years. There are several cases requiring different formulas. 

 To start, consider the case of a zero coupon bond with price 𝑝𝑝 that pays a single cash flow 𝑐𝑐 at 
the end of ℎ years. This could be a zero coupon bond originally or a standard bond with one payment 
le�. If ℎ < 1

2
 , the yield 𝑦𝑦 as a percent is given by the following formula calculated as simple interest: 

                                                                          𝑝𝑝 = 𝑐𝑐
�1+2ℎ 𝑦𝑦

200�
      (4.5) 

If ℎ ≥ 1
2
, the yield 𝑦𝑦 for this bond is the value that solves: 

                                                                          𝑝𝑝 = 𝑐𝑐

�1+ 𝑦𝑦
200�

2ℎ      (4.6) 

Note that if ℎ = 1
2
, the two formulas give the same result. Equa�on (4.6) is the formula for the spot rate 

from a zero coupon bond that is used for the spot yield curve in Chapter 14. 

 Equa�on (4.5) also applies to a standard bond that has only one cash flow le� to be paid. Turning 
to a standard bond with mul�ple cash flows: each of these cash flows can be viewed as a zero coupon 
bond and the yield for each cash flow can be set such that the prices of the cash flows sum to 𝑝𝑝. If the 
yields for the cash flows are constrained to be the same, the yield becomes in some sense the average 
yield for the whole bond. This is the yield to maturity, and it is the value of 𝑦𝑦 that solves the following: 

                                                                    𝑝𝑝 = ∑ 𝑐𝑐𝑖𝑖

�1+ 𝑦𝑦
200�

2ℎ𝑖𝑖
𝑛𝑛
𝑖𝑖=1      (4.7) 

 Equa�on (4.7) is typically applied to corporate bonds that use a 30/360 day count, and this 
formula is o�en called the street conven�on for calcula�ng yield. Note again that if 𝑛𝑛 = 1 and ℎ1 = 1

2
, 

Equa�ons (4.5) and (4.7) give the same result. Equa�on (4.7) is used to compute the par yield curve in 
Chapter 14. 

 A different conven�on for calcula�ng yield is the Treasury conven�on. As its name implies, it is 
used for Treasury securi�es both nominal and TIPS. For securi�es with one payment and at most a half-
year to maturity, the same formula Equa�on (4.5) is used in the Treasury conven�on. But for other 
securi�es, Equa�on (4.7) is replaced with the following equa�on that uses simple interest up to the first 
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half-year. For this equa�on, define ℎ0 = ℎ1 if ℎ1 ≤
1
2
 and ℎ0 = ℎ1 −

1
2
 otherwise. The case where ℎ1 > 1

2
 

is for long first coupons, and these no longer exist in Treasury securi�es currently being traded although 
they did exist historically. 

                                                        𝑝𝑝 = ∑ 𝑐𝑐𝑖𝑖

�1+2ℎ0
𝑦𝑦
200��1+

𝑦𝑦
200�

2�ℎ𝑖𝑖−ℎ0�
𝑛𝑛
𝑖𝑖=1      (4.8) 

Note that Equa�on (4.7) and Equa�on (4.8) are the same if ℎ1 = 1
2
, which is the assump�on for the par 

and spot yield curves derived in Chapter 14. 

 The formulas so far have used half-year coupon periods and ignored weekends and holidays. 
There is another concept of yield called true yield 𝑦𝑦TRUE that uses the actual years to cash flow 
payments given in the 𝜏𝜏𝑖𝑖 defined above. The formulas are en�rely analogous to Equa�ons (4.5) and (4.7). 
Here is the formula equivalent to Equa�on (4.5) for bond with maturity 𝜏𝜏: 

                                                                         𝑝𝑝 = 𝑐𝑐
�1+2𝜏𝜏𝑦𝑦TRUE200 �

     (4.9) 

And here is the equivalent to Equa�on (4.7): 

                                                                      𝑝𝑝 = ∑ 𝑐𝑐𝑖𝑖

�1+𝑦𝑦TRUE200 �
2𝜏𝜏𝑖𝑖

𝑛𝑛
𝑖𝑖=1      (4.10) 

 For all the formulas set out above, it is clear that the cash flows in the numerator on the right-
hand side are posi�ve because 𝜅𝜅 > 0. Moreover, the yield can be anything above -100 percent, so a 
solu�on exists for each formula. For nominal bonds, it should always be true that 𝑝𝑝 < ∑ 𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1  with the 
result that the yield has to be posi�ve. However, for TIPS this doesn’t have to be true and the yield can 
be nonposi�ve. 

 These formulas show that there are two ways to compute yield: conven�onal yield using half-
years ignoring weekends and holidays, and true yield using actual years to payments. The price equa�on 
es�ma�on uses the second approach: true yield and actual years to payments. In contrast, once having 
es�mated the price equa�on using true yield, the computa�ons of the spot and par yield curves use the 
market conven�on of half-years. 
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Bond Set for TNC and TRC 

 Having defined standard bonds, it’s now possible to list which bonds are included in the bond set 
for es�ma�ng the TNC and TRC Treasury yield curves. As much as possible, all Treasury coupon issues 
trading in the market are included in the computa�on of these yield curves. Prices for es�ma�on are bid 
prices. 

 However, coupon issues that have only one cash flow le� or for whom the maturity 𝜏𝜏𝑛𝑛 ≤
1
2
 are 

excluded because they are so short-term that they are part of the cash market and are no longer traded 
as bonds. And Treasury bills and floa�ng rate notes are excluded because they are not coupon issues. 

 All other Treasury coupon issues are included of whatever maturity. In par�cular, for TNC, on-
the-run and first off-the-run coupon issues are included with special dummy variables. Also, in historical 
data, Treasury callable bonds and flower bonds are included with special regression variables even 
though they’re not standard bonds. These securi�es are discussed in Chapter 12. 

 For TIPS, the concept of on-the-run doesn’t apply nor are there any nonstandard bonds. So all 
TIPS coupon issues are included except the very short-term issues as men�oned above. 

 

Bond Set for HQM 

 The HQM bond set also includes as many standard bonds as possible. Same as Treasuries, prices 
for es�ma�on are bid prices. 

 All bonds for HQM must be nominal corporate bonds issued by U.S. corpora�ons and 
denominated in dollars. The bonds must be rated A, AA, or AAA by na�onally recognized sta�s�cal ra�ng 
organiza�ons. 

 Analogous to Treasuries, HQM bonds that have only one cash flow le� or for whom the maturity 
𝜏𝜏𝑛𝑛 ≤

1
2
 are excluded. Also excluded are bonds with maturity 𝜏𝜏𝑛𝑛 > 30; there are only a few bonds with 

maturity greater than 30 years, not enough to extend reliably the maturity ranges beyond 30 years. 
Maturi�es below 1 year are currently filled in with Federal Reserve AA financial and AA nonfinancial 
commercial paper rates. To ensure sufficient liquidity, each of the corporate bonds in HQM must have a 
minimum size in terms of par amount outstanding: the current minimum is $250 million. 

 At the present �me, callable bonds with a call schedule are excluded, while make whole calls are 
included. Putable bonds and bonds with sinking funds are also excluded. All these bonds are 
nonstandard bonds. 

 However, there is an excep�on in that bonds with a single call date within the final year before 
maturity are included in HQM. These bonds are here called end calls, bonds with an end-call date. End 
calls have become very important in bond markets star�ng around 2016, and they need to be included 
to capture market behavior. 

 In principle, end calls are nonstandard bonds because the presence of the call date could affect 
the bond’s price. This might mean that another regression variable is required to pick up the end-call 
effects on price. However, so far there has been no indica�on that the end call is actually affec�ng price. 
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As a result, the presence of the end call can be ignored in yield curve es�ma�on and doesn’t need to be 
accounted for, and the end-calls are considered to be standard bonds that can be put in the price 
equa�on without adjustment for the call. End-calls were introduced into the HQM yield curve in 
February 2024. 

 Other nonstandard bonds are excluded from HQM: A bond that does not have a fixed coupon is 
excluded; in par�cular, bonds with floa�ng coupons are excluded because their interest payments are 
unpredictable and they therefore provide litle if any informa�on about rates of return over future �me 
periods. Bonds without a fixed maturity date when the principal is to be returned are also excluded. And 
conver�ble bonds are excluded because their price depends on the companion equity and they do not 
have an unambiguous price for their cash flows. Bonds that are capital securi�es or hybrid preferred 
stock are excluded, as are bonds issued by a government-sponsored enterprises. Asset-backed bonds are 
also excluded. 

 The discussion in this chapter has described the sets of bonds for XRM yield curve es�ma�on. 
Star�ng with the next chapter, the price equa�on is constructed that will use these bond sets. 
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5. The Discount Func�on and Forward Rate 

 

 

 

 
 This chapter describes the discount func�on and the companion forward rate. The discount 
func�on is the founda�on of the price equa�on, and using the discount func�on as described in this 
chapter, the price equa�on can be writen down conceptually in the next chapter. The price equa�on will 
be es�mated using the set of bonds described in the previous chapter, and the es�ma�on results will be 
used to compute yield curves and related sta�s�cs. 

 The discount func�on is a general concept in finance, and this discussion stresses the par�cular 
implementa�on of the discount func�on for the XRM methodology. 

 

The Discount Func�on for Nominal Bonds 

 In this sec�on, the discount func�on for nominal bonds is described including the HQM and TNC 
yield curves whose payments are in dollars. The next sec�on will discuss the discount func�on for TIPS 
that are used in the TRC yield curve and whose payments are in real terms. 

 Nominal bonds have a nominal discount func�on that measures economic �me preference. Time 
preference means that payments received earlier in �me are more valuable. The reason why an earlier 
payment is beter is because the earlier payment can earn interest or be used for other purposes, its real 
value will not decline as much if there’s infla�on, and in general a shorter period is less risky. The 
valua�on of cash payments at different future �mes is basic to bond pricing. 

 The discount func�on 𝛿𝛿(𝜏𝜏) pertains to the setlement date for which the yield curve is being 
calculated and maturi�es are computed forward from that point. The discount func�on 𝛿𝛿(𝜏𝜏) is defined 
as follows: for each future maturity in years 𝜏𝜏 ≥ 0, 𝛿𝛿(𝜏𝜏) gives the present market price of $1 that will be 
received 𝜏𝜏 years in the future. Because of �me preference, the market price is less than $1, and 
furthermore the price declines as 𝜏𝜏 rises because payments further out in �me are less valuable. Writen 
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conversely, the discount func�on implies that the payment to be received in 𝜏𝜏 years for a present 
investment of $1 is 1

𝛿𝛿(𝜏𝜏)
. 

 Each sector of the bond market has its own discount func�on reflec�ng the characteris�cs of 
cash flows in that sector. Specifically, high quality bonds in the HQM yield curve have a different discount 
func�on than nominal Treasury securi�es in the TNC yield curve. In par�cular, the HQM discount 
func�on is usually below the TNC discount func�on because future cash flows from high quality 
corporate bonds with default risk are worth less than Treasury cash flows without default risk, although 
transient factors such as liquidity can cause HQM to be above TNC at short maturi�es around one year. 

 The discount func�on is a theore�cal concept because typically there isn’t any market for future 
cash flows based on �me preference. So the discount func�on can’t be traded directly but is embedded 
in bond prices. While it’s true that some bond sectors such as Treasuries trade spot or zero coupon 
bonds, these bonds don’t represent the discount func�on directly because their prices may be 
influenced by factors other than �me preference. The regression variables discussed later pick up these 
factors. 

 Based on this discussion, the features of the discount func�on are specified as follows. First, the 
discount func�on starts at unity at the present �me 𝜏𝜏 = 0 because $1 paid at present gives back $1. The 
discount func�on must be posi�ve throughout. And the discount func�on declines because payments 
received later are worth less: 

 

                                                                  𝛿𝛿(0) = 1;  𝛿𝛿(𝜏𝜏) > 0     (5.1) 

                                                                         d𝛿𝛿(𝜏𝜏)
d𝜏𝜏

< 0      (5.2) 

 

The Discount Func�on for the TRC Yield Curve 

 TIPS securi�es in the TRC yield curve are real bonds, and they have a real discount func�on that 
gives the present market price in real terms to receive $1 in real terms in the future. This discount 
func�on has the same features as Equa�on (5.1). 

However, in contrast to nominal discount func�ons, the TRC real discount func�on doesn’t 
necessarily decline and can even be greater than unity for 𝜏𝜏 > 0. The reason for this is that the TRC 
discount func�on must be consistent with the TNC discount func�on. To illustrate, let 𝛿𝛿TNC(𝜏𝜏) and 
𝛿𝛿TRC(𝜏𝜏) be the TNC and TRC discount func�ons and let 𝑝𝑝𝜏𝜏 and 𝑝𝑝0 be the expected price level at maturity 
𝜏𝜏 and the actual price level at present. Then the following rela�onship holds approximately for the two 
discount func�ons: 

                                                                    𝛿𝛿TNC(𝜏𝜏) 𝑝𝑝𝜏𝜏
𝑝𝑝0
≈ 𝛿𝛿TRC(𝜏𝜏)     (5.3) 

The le�-hand side of this equa�on is the price to receive $1 in real terms at maturity 𝜏𝜏 formulated using 
the TNC discount func�on. This must approximate the equivalent price from the TRC discount func�on, 
with differences reflec�ng such things as different market condi�ons between real and nominal bonds 
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and infla�on uncertainty. This equa�on shows that as expected infla�on and 𝑝𝑝𝜏𝜏
𝑝𝑝0

 rises, increasing amounts 

of dollars must be invested at present to get the same real $1 in the future, with the result that 𝛿𝛿TRC(𝜏𝜏) 
must rise too maybe even above unity if 𝛿𝛿TNC(𝜏𝜏) does not decline enough. This is the situa�on when 
nominal interest rates don’t rise as fast as infla�on causing real interest rates to be nega�ve. 

 

The Forward Rate 

 This sec�on defines the forward rate associated with the discount func�on. The defini�on will 
show that the discount func�on and the forward rate are in a sense the inverse of each other and each 
one implies the other. 

 To define the forward rate, assume that there is a loan of $1 which using the discount func�on 
promises to pay 1

𝛿𝛿(𝜏𝜏1)
 at maturity 𝜏𝜏1. If this loan is extended for a short �me to 𝜏𝜏2 > 𝜏𝜏1, the interest rate 

on this extension would be: 

                                                               
1

𝛿𝛿(𝜏𝜏2)−
1

𝛿𝛿(𝜏𝜏1)
1

𝛿𝛿(𝜏𝜏1)
(𝜏𝜏2−𝜏𝜏1)

= − 𝛿𝛿(𝜏𝜏2)−𝛿𝛿(𝜏𝜏1)
𝛿𝛿(𝜏𝜏2)(𝜏𝜏2−𝜏𝜏1)

 

As 𝜏𝜏2 approaches 𝜏𝜏1, this interest rate approaches the forward rate, with the result that the forward rate 
𝜙𝜙(𝜏𝜏) is defined as follows: 

                                                          𝜙𝜙(𝜏𝜏) = −d𝛿𝛿(𝜏𝜏)
d𝜏𝜏

1
𝛿𝛿(𝜏𝜏) =  −dlog(𝛿𝛿(𝜏𝜏))

d𝜏𝜏
    (5.4) 

Note that the forward rate is instantaneous, that is, the period of �me for which the loan is extended is 
infinitesimal. Moreover, as given in this defini�on, the forward rate is a simple interest rate expressed in 
decimals: for analysis and comparison with other interest rates, it can be converted to a percentage by 
mul�plying by 100. 

 The defini�on shows that for nominal bonds where the discount func�on is declining, the 
forward rate is always posi�ve. However, for TIPS, the forward rate is nega�ve when the discount 
func�on is rising, and it is zero when the discount func�on is unchanged. 

 The defini�on gives the forward rate as the rela�ve curvature of the discount func�on. 
Consequently, the forward rate is higher when the discount func�on is falling more rapidly indica�ng a 
faster increase in �me preference. This implies that the forward rate is high at a par�cular maturity when 
markets see less opportunity and more risk at that maturity. Therefore, at each maturity, the forward 
rate summarizes in a single number the market views about risks and rewards at that maturity, and as a 
result, forward rates can be compared both over �me and across different maturi�es. For this reason, it’s 
usually easier to es�mate the price equa�on using the forward rate and derive the discount func�on 
from it rather than es�mate the discount func�on directly. This is the approach followed in XRM. 
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 By integra�ng each side of Equa�on (5.4) and using the fact that log�𝛿𝛿(0)� = 0, the following 
inverse formula is obtained for the discount func�on in terms of the forward rate: 

                                                            𝛿𝛿(𝜏𝜏) = exp �−∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏
𝛼𝛼=0 �     (5.5) 

When the price equa�on is es�mated using the forward rate, this is the formula that will be used to 
derive the discount func�on. 

 

Constant Forward Rate 

 When the forward rate is constant and posi�ve for all maturi�es beyond a certain maturity, the 
discount func�on becomes an exponen�al decline. This fact is useful because as discussed in Chapter 9 
the forward rate will be held constant at the long term forward rate 𝜙𝜙∗ in the projec�on range for 𝜏𝜏 ≥
𝜏𝜏∗, where 𝜏𝜏∗ is 30 years maturity. 

 If the forward rate is a constant 𝜙𝜙∗ > 0 star�ng at 𝜏𝜏∗, Equa�on (5.5) takes the following form for 
𝜏𝜏 ≥ 𝜏𝜏∗. In this equa�on, the discount func�on has an asymptote at zero. If 𝜏𝜏∗ = 0 so that the forward 
rate is constant for all maturi�es, the discount func�on is an exponen�al decline throughout. 

                                         𝛿𝛿(𝜏𝜏) = exp �−∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏∗

𝛼𝛼=0 � × exp�−∫ 𝜙𝜙∗d𝛼𝛼𝜏𝜏
𝛼𝛼=𝜏𝜏∗ �   (5.6) 

                                                  = exp �−∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏∗

𝛼𝛼=0 �× exp(−𝜙𝜙∗(𝜏𝜏 − 𝜏𝜏∗) 

 Normally 𝜙𝜙∗ is posi�ve for nominal yield curves. It’s usually posi�ve for the TRC yield curve too. 
However, on about three dozen days over the last 20 years it has been nega�ve, all of which were in the 
midst of the COVID-19 pandemic. For 𝜏𝜏 ≥ 𝜏𝜏∗, if it’s nega�ve with 𝜙𝜙∗ < 0, the discount func�on rises 
exponen�ally indefinitely. This situa�on reflects temporary market anomalies because the discount rate 
reflec�ng �me preference should eventually decline. 

 If 𝜙𝜙∗ = 0, the discount func�on remains constant throughout the projec�on range. Such a 
situa�on is also abnormal in markets because it implies the absence of �me preference. For all days 
star�ng in 2003 forward for which the TRC yield curve is done, there’s hasn’t been one day in which 
𝜙𝜙∗ = 0, although there have been �mes when it was near zero. 
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The Discount Spot Rate 

 The discount func�on can be converted into an interest rate called the discount spot rate that 
gives the return from inves�ng in the discount func�on: that is, for $1 invested now the discount 
func�on provides $ 1

𝛿𝛿(𝜏𝜏)
 at maturity 𝜏𝜏. The discount spot rate is dis�nct from the spot rate in the spot 

yield curve discussed in Chapter 14, because the later spot rate includes the effects of regression 
variables. The discount spot rate concept was developed in the Office of Financial Analysis. 

 Normally it’s not possible in actual markets to invest in the discount func�on. But the concept of 
the discount spot rate makes it easier to visualize the discount func�on in comparison to other interest 
rates, and is useful in analyzing the asympto�c proper�es of the actual spot rate implied by the market 
in spot yield curves. 

 The discount spot rate 𝑟𝑟D(𝜏𝜏) as a func�on of 𝜏𝜏 is given by the following formula for the discount 
func�on and the forward rate. In the formula, 𝑟𝑟D(𝜏𝜏) is expressed as a percentage, and following standard 
market prac�ce, the compounding is semiannual as indicated by the number 2 in the exponent and the 
denominator. 

                                                                �1 + 𝑟𝑟D(𝜏𝜏)
200

�
2𝜏𝜏

= 1
𝛿𝛿(𝜏𝜏)

      (5.7a) 

                                                        ⇒ 𝑟𝑟D(𝜏𝜏) = 200 × �� 1
𝛿𝛿(𝜏𝜏)

�
1
2𝜏𝜏 − 1�    (5.7b) 

                                                                        = 200 × �exp �∫
𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏

𝛼𝛼=0
2𝜏𝜏

� − 1� 

 

 From this formula, the deriva�ve of the discount spot rate is given as: 

                                             d𝑟𝑟D(𝜏𝜏)
d𝜏𝜏

= 200 × exp �∫
𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏

𝛼𝛼=0
2𝜏𝜏

� × �𝜙𝜙(𝜏𝜏)
2𝜏𝜏

− ∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏
𝛼𝛼=0

2𝜏𝜏2
�   (5.8) 

The sign of this deriva�ve is determined by the expression: 

                                                                         𝜙𝜙(𝜏𝜏) − ∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏
𝛼𝛼=0

𝜏𝜏
 

Therefore, the discount spot rate at any maturity is rising when the forward rate at that maturity is 
greater than the forward rate average up to that maturity. One implica�on is that the curve of forward 
rates can have a hump, but this does not necessarily imply that the discount spot rate must also have a 
hump. 

 As discussed later, the forward rate is assumed to setle down to the long-term forward rate 𝜙𝜙∗ 
for maturi�es greater than 𝜏𝜏∗ which equals 30 years. Inser�ng this assump�on into Equa�on (5.7b) for 
𝜏𝜏 > 𝜏𝜏∗ gives: 

                                            𝑟𝑟D(𝜏𝜏) = 200 × �exp�∫
𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏∗

𝛼𝛼=0 +∫ 𝜙𝜙∗d𝛼𝛼𝜏𝜏
𝛼𝛼=𝜏𝜏∗

2𝜏𝜏
� − 1�   (5.9) 
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This equa�on implies that as 𝜏𝜏 goes to infinity, the discount spot rate converges to the long-term 
discount spot rate 𝑟𝑟D∗: 

                                                                 𝑟𝑟D∗ = 200 × �exp �𝜙𝜙
∗

2
� − 1�     (5.10a) 

This equa�on is the same as: 

                                                                      �1 + 𝑟𝑟D
∗

200
�
2

= exp(𝜙𝜙∗)     (5.10b) 

Therefore, 𝑟𝑟D∗ and 𝜙𝜙∗ are the same interest rate except that 𝑟𝑟D∗ is semiannually compounded following 
market conven�on and expressed as a percent while 𝜙𝜙∗ is con�nuously compounded because it’s based 
on the instantaneous forward rate and is expressed as a decimal. So the discount spot rate converges to 
the long-term forward rate. 

 However, a caveat here is that the convergence may be of limited prac�cal use because even 
though the formulas show that convergence eventually occurs, it may not be achieved or come close 
enough even within the long �meframe of 100 years maturity of the projec�on range. The speed of 
convergence depends on the bond data at a par�cular �me. Therefore, the convergence may be more of 
an indicator of general tendency rather than a number that can be used for decisions in markets. 
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6. The Price Equa�on 

 

 

 

 
 This chapter uses the discount func�on and companion forward rate from the previous chapter 
to write down the conceptual form of the price equa�on. Subsequent chapters will specify the 
mathema�cal form of the discount func�on and the price equa�on for es�ma�on using the set of bonds 
set out in Chapter 4. 

 Chapter 4 shows that each bond used in es�ma�on is described by the bond price 𝑝𝑝 including 
accrued interest at the setlement date, 𝑛𝑛 cash flows 𝑐𝑐𝑖𝑖 plus years from setlement 𝜏𝜏𝑖𝑖 when the cash 
flows are received, 𝑖𝑖 = 1, … ,𝑛𝑛, and any addi�onal informa�on required to compute the regression 
variables. The price equa�on models the bond price as a func�on of the future cash flows and the 
addi�onal informa�on. 

 The first sec�on of this chapter states the purpose of the price equa�on. The next sec�on sets 
out the conven�onal price equa�on for yield curve analysis using the discount func�on alone. The third 
sec�on discusses the extended price equa�on used by XRM. 

 

Purpose of the Price Equa�on 

 The purpose of the price equa�on is to model the prices of the types of bonds discussed in 
Chapter 4 as func�ons of cash flows and other variables. The resul�ng price equa�on when es�mated 
provides informa�on about yield curves and other sta�s�cs characterizing the bond market. There are 
separate price equa�ons for HQM, TNC, and TRC yield curves. 

 The price equa�on is broken into two parts. The first part shows the effects of �me preference 
on the cash flows from the bonds in determining the bond price. The second part shows the effects of 
other factors on the price separate from the effects of �me preference. These other factors are 
measured by regression variables in the price equa�on. 
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 It’s important to realize that the price equa�on must be constructed so as to represent the 
standard bond set in Chapter 4 even if the equa�on is used to es�mate results for other types of bonds. 
This is because the standard bond set is used for es�ma�on, so to get accurate es�mates, the price 
equa�on must pertain to standard bonds. Calcula�ons for nonstandard bonds, such as spot rates for zero 
coupon bonds, will then be consistent with the standard bonds. 

 For example, the HQM price equa�on pertains to standard high quality corporate bonds with 
coupons as described in Chapter 4. However, the HQM yield curve is typically used to es�mate spot or 
zero coupon rates for pension discoun�ng and other purposes even though a fully developed corporate 
bond zero coupon market does not exist. By calcula�ng the spot rates from the HQM price equa�on, the 
spot rates are consistent with standard corporate bonds with coupons and therefore with the bond 
market as it currently exists, and the spot rates show what a corporate bond zero coupon market would 
look like if it did exist along with standard corporate bonds. 

 

Conven�onal Price Equa�on 

 Conven�onal yield curve analysis views a bond as made up of 𝑛𝑛 separate zero coupon bonds 
paying respec�vely 𝑐𝑐𝑖𝑖 at 𝜏𝜏𝑖𝑖. Given the discount func�on, the price of each of these zero coupon bonds 
based on �me preference can be computed by applying the discount func�on to the cash flows, and all 
these prices can be summed to get the total price of the bond: 

                                                           𝑝𝑝 = ∑ exp�−∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏𝑖𝑖
𝛼𝛼=0 �𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1     (6.1) 

 This formula�on is the conven�onal price equa�on typically used by yield curve approaches. This 
equa�on only includes effects of �me preference. The bulk of the research effort in yield curve analysis 
over the last several decades has been devoted to devising a workable func�onal form for the discount 
func�on. 

 The point to be emphasized is that by including only the discount func�on, the conven�onal 
price equa�on mixes in other effects on price separate from �me preference with the �me preference 
effects. For example, effects that frequently generate a hump in yields around 20 years maturity that are 
examined in Chapter 10 are forced to be in the discount func�on although these effects are separate 
from �me preference. 

 By mixing these effects together, the resul�ng es�mates from the conven�onal price equa�on 
are imprecise. Consequently, it’s necessary to include regression variables in addi�on to the discount 
func�on. Regression variables are included in the XRM methodology and are shown in the extended 
bond price equa�on set out in the next sec�on. 

 Furthermore, all the bonds used for es�ma�on in the conven�onal price equa�on have to be 
homogeneous: there’s no provision for bonds that have different features because there’s no way to 
account for them. This is another reason why regression variables are needed: for example, the HQM 
yield curve includes corporate bonds rated A, AA, and AAA, and the differences in price among these 
different ra�ngs are picked up by regression variables. 
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 Another limi�ng aspect of the conven�onal price equa�on is that it doesn’t have any constraints 
on the forward rate. Constraints are required to ensure stability of the forward rate and to enable 
projec�on of the forward rate beyond 30 years maturity. 

 

Extended Price Equa�on 

 The following is the extended price equa�on including regression variables used by XRM: 

                                                𝑝𝑝 = ∑ exp�−∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼𝜏𝜏𝑖𝑖
𝛼𝛼=0 �𝑐𝑐𝑖𝑖𝑛𝑛

𝑖𝑖=1 + ∑ 𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗𝑚𝑚
𝑗𝑗=1     (6.2) 

This equa�on has the same discount func�on as the conven�onal price equa�on but adds 𝑚𝑚 regression 
variables 𝑥𝑥𝑗𝑗 with coefficients 𝜃𝜃𝑗𝑗, 𝑗𝑗 = 1, … ,𝑚𝑚. Therefore, this equa�on has the two parts discussed above: 
the discount func�on for �me preference and regression variables for effects on price separate from 
�me preference. And it is assumed that the discount func�on has constraints that allow projec�on 
beyond 30 years maturity. 

 Note that in this conceptual formula�on of the extended price equa�on, the characteris�cs of 
the regression variables aren’t specified. This is because in general the characteris�cs can be anything, 
the variables aren’t limited. In par�cular, the value of a regression variable for a bond is o�en a func�on 
of the �me to maturity of the bond, as is the case with the hump variable, but this is not made explicit in 
the formula�on. 

 It also should be noted that the regression variables are linear and added linearly to the discount 
func�on. In principle the regression variables could be nonlinear, and it might be useful to develop 
nonlinear variables in some circumstances. Here the linearity is an approxima�on, as it is for most 
regressions, although the results below will show that it works well. 

 Another point regarding linearity is that linearity assumes that the regression variables don’t 
vary too much from a mean so that any nonlinear affects can be adequately approximated by linearity. 
This seems to be true for the variables included in the yield curves in this discussion. 

 Also, it should be noted that there’s o�en a lot of noise in bond data so the signal to noise ra�o 
can be low. While it may be possible to develop an elaborate nonlinear formula�on that picks up subtle 
bond effects, it may be impossible to es�mate such a formula�on given all the randomness in the data. 
In fact, such a formula�on may end up genera�ng spurious random es�mates. So it may be beter to 
s�ck with a straigh�orward linear formula�on which is the best that can be done with the data. In 
general, given bond data limita�ons, it’s o�en beter to s�ck with simple regression variables. 

 

 

 The next step for es�ma�ng the price equa�on is to determine the mathema�cal form of the 
discount func�on, and a�er that to specify the regression variables. The mathema�cal form of the 
discount func�on based on a spline over maturity ranges is described in Chapters 7-9. The regression 
variables currently used in the yield curves are described in Chapters 10-12. 
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7. Maturity Ranges 

 

 

 

 
 This chapter describes the maturity ranges that are the basis of the func�onal form of the 
discount func�on and forward rate for es�ma�ng the price equa�on. Using the maturity ranges, the 
following two chapters then formulate the spline func�on that represents the discount func�on and 
forward rate. 

 

The Forward Rate Spline 

 The func�onal form must model the forward rate over all the maturi�es zero from 30 years that 
cover the bond set used in es�ma�on. The XRM methodology develops this func�onal form by dividing 
these maturi�es into ranges. 

 The idea of maturity ranges is that at any �me bond trading can be divided into maturity ranges 
such that trading in each range reflects market views of the rewards and risks of the bonds in that range. 
Therefore, trades in each range are related, because the trades reflect a common average market 
opinion at that �me. As a result, values of the forward rate within each range, which are indicators of risk 
and reward, are related. 

 Once the maturity ranges are chosen, the forward rate in each range could be approximated by a 
constant that equals the forward rate average in that range. However, there can be significant movement 
in the forward rate within a range that needs to be captured so that the forward rate is accurately 
represented. This is especially true insofar as the last range is big. Moreover, fixed averages do not 
connect across ranges, and in order to get a well-behaved representa�on of the forward rate, the values 
of the forward rate in the ranges must join together smoothly. 

 A smooth forward rate can be obtained without depar�ng too far from averages, and without 
introducing excessive vola�lity, by using a cubic polynomial to represent the forward rate values over the 
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maturi�es in each range. The degree of the polynomial is set at cubic, because cubic polynomials exhibit 
sufficient flexibility to capture market movements of the forward rate in a range while having a small 
number of parameters to be es�mated. 

 These cubic polynomials, one for each range, are strung together in a smooth fashion such that 
they are con�nuous with con�nuous first and second deriva�ves. The result is a smooth piecewise cubic 
polynomial that represents the forward rate over all maturi�es and that can be es�mated from the bond 
set. But in fact this is the defini�on of a cubic spline, with the spline knot points being the maturi�es that 
delineate the maturity ranges. 

 Therefore, in XRM, the use of the cubic spline arises naturally from the smooth joining of the 
forward rate across the maturity ranges, and the choice of knots for the spline comes from the maturity 
ranges themselves. The choice of a cubic spline is not imposed upon the forward rate but is jus�fied by 
the maturity ranges. Consequently, in contrast to conven�onal yield curve approaches, rather than 
choosing a spline ini�ally, XRM focuses on maturity ranges and the choice of the spline arises from the 
ranges. 

 In addi�on, conven�onal yield curves that use splines and that don’t have maturity ranges have 
difficulty picking the knots for the splines. Usually the choice of knots in such approaches is based on 
some rule of thumb that may depend on characteris�cs of the bond set itself. Consequently, the knots 
are arbitrary, and different knots can give different results. Moreover, choosing knots based on the set of 
bonds itself can be unstable because it’s circular: rather than fi�ng a model to a set of bonds, the model 
itself depends on the bonds. 

 In contrast, the choice of knots in XRM is done before es�ma�on and comes from the maturity 
ranges separate from the set of bonds used in the es�ma�on. Therefore, the knots aren’t arbitrary. And 
fixing the knots in advance of es�ma�on provides excep�onally stable numerical results over �me 
regardless of market condi�ons. Moreover, in the XRM methodology with fixed knots, results from 
different bond sets can be directly compared using the same model, where the bond sets can be from 
the same day or from different days. 

 A spline is a flexible mathema�cal formula�on that is o�en used to model sta�s�cal func�ons. 
The next chapter will write out in detail the B-spline polynomials that are used to set up the forward rate 
spline and for es�ma�on. The spline is chosen to be third-degree cubic because cubic polynomials 
provide plenty of flexibility without excessive complica�on or spurious movements o�en seen with 
higher degrees. Because maturi�es of the set of bonds used in es�ma�on range from ½ year to 30 years, 
the span of maturi�es over which the spline is calculated is taken to be from zero to 30 years maturity.  
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The Maturity Ranges 

 The previous sec�on set out the concept of maturity ranges. This sec�on defines the maturity 
ranges used in the yield curves. The three yield curves presented here, HQM, TNC, and TRC, use the 
same maturity ranges. 

 The method of choosing the maturity ranges focuses on the set of central maturi�es that market 
observers watch as indicators of the state of the bond market. Bond traders develop the pricing and 
trading strategy for each bond by considering the central maturity to which it is closest. So it is 
reasonable to define the maturity ranges in which the forward rates and bond trades are related as 
ranges around the central maturi�es. 

 The central maturi�es are 1 year, 2 years, 5 years, 10 years, and 30 years, so each one of these 
maturi�es gives rise to a maturity range. In addi�on, there are subsidiary central maturi�es of 3 years, 7 
years, and 20 years that help determine the endpoints of the ranges. 

 The reason why these maturi�es are central is that bond market analysis and commentary 
consistently use these maturi�es to describe and discuss bond market characteris�cs and have been 
doing so for many decades. This shows the importance of these maturi�es in the minds of bond market 
par�cipants. Moreover, the fact that these maturi�es are central is supported by the fact that Treasury 
notes and bonds are issued at these maturi�es, including the Treasury bill at 1 year. 

 Therefore, there is a total of five maturity ranges, each one based on a central maturity that 
anchors the bond trading in that range and consists of a span of maturi�es around the central maturity. 
Here are the maturity ranges: 

• The first maturity range comprises the shortest bonds. This range is anchored by the short-run 
maturity of 1 year and runs from zero through 1½ years maturity. However, as noted in Chapter 
4, bonds with maturi�es less than ½ year are not used in the yield curves, so this range really 
starts at ½ year. And it ends at 1½ years which is halfway between the central maturity of 1 year 
and the next central maturity of 2 years. 

• The second maturity range also comprises bonds that are s�ll considered short-term. This range 
is anchored by the central maturity of 2 years and runs from 1½ years through the central 
maturity of 3 years. The 3-year maturity is considered by markets as the borderline between 
short-term bonds and the medium-term central maturity of 5 years. 

• The third maturity range is medium-term. This range is anchored by the central maturity of 5 
years and runs from 3 years through the central maturity of 7 years for a span that’s 2 years on 
either side of the 5-year point. Analogous to the second maturity range, the 7-year maturity is 
considered to be the borderline between medium-term bonds and the central maturity of 10 
years. The third range includes the 4-year maturity which used to be a central maturity in the 
Treasury market but is no longer issued. 

• The fourth maturity range covers the core maturi�es of bonds, that is, bonds that are most 
important in market trading and that are neither short-term nor long-term. This range is 
anchored by the central maturity of 10 years, which is the most important maturity point that 
reflects bond market condi�ons, and runs from 7 years through 15 years. The 15-year maturity is 
halfway between the 10-year maturity and the long-term central maturity of 20 years, so the 15-
year maturity can be considered the borderline for long-term bonds. 
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• Finally, the last or farthest maturity range encompasses long-term maturi�es from 15 years 
maturity up through the central maturity of 30 years and includes the central maturity of 20 
years. Because the farthest maturity is 30 years for the set of bonds used in es�ma�on, this last 
range plus the first four ranges include the en�re bond set. The last range is a big range, and 
addi�onal movement of the forward rate within this range will be picked up by the hump 
variable discussed later. Special note: for Treasury securi�es, this last range goes up a bit higher 
to 30.51 years maturity to encompass all recent Treasury securi�es. This will s�ll be referred to 
as 30 years maturity in the discussion. 

• In addi�on to these five maturity ranges at 30 years maturity and below, there is also a 
projec�on range of 30 years maturity through 100 years maturity. Because there are insufficient 
numbers of bonds beyond 30 years maturity to es�mate the forward rate in the projec�on 
range, a fixed long-term forward rate es�mated through 30 years maturity is used to provide 
yield data out through 100 years maturity. The projec�on range is discussed in Chapter 9. 

 From this discussion it follows that the maturi�es delinea�ng these ranges are the six points 
[0,1½,3,7,15,30]. Therefore, these will be the knots for the cubic spline that represents the forward rate 
𝜙𝜙(𝜏𝜏). The next chapter will show how to use B-splines to set up this spline for es�ma�on. 

 Finally, there is the ques�on whether these maturity ranges need to change over �me. The XRM 
methodology allows for changes if needed. However, as a mater of fact, these maturity ranges have 
worked well for both Treasury and high quality and investment grade corporate bonds for over half a 
century. This has been true largely because the central maturi�es used to construct these ranges have 
been chosen to be the same as the maturi�es of Treasury issues, and because Treasury maturi�es have 
largely defined central maturi�es in the corporate bond market and, of course, in the Treasury market. 
And it should be noted that one consequence of having the same maturity ranges across Treasury and 
corporate bond markets and over �me is that the es�mated spline coefficients form a �me series that 
can be compared over the decades. 
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8. B-Splines 

 

 

 

 
 The previous chapter showed that knots [0,1½,3,7,15,30] derived from the maturity ranges will 
be used to generate the cubic spline that represents the forward rate. This chapter describes the 
mechanics for se�ng up this spline for es�ma�on. 

 The spline discussion presented here is somewhat different from spline textbooks, so the 
methodology is writen out in some detail. It’s important to understand the features of the spline 
methodology, because in the next chapter the spline will be modified by constraints that aren’t part of 
typical spline applica�ons. The references contain a fuller exposi�on of spline mathema�cs; this chapter 
stresses aspects of splines that are relevant for the yield curves and is not a complete exposi�on of 
splines.6F

7 

 The XRM methodology is based on B-splines or basis splines for construc�ng the spline for the 
forward rate. The B-splines are computed from the maturity range knots [0,1½,3,7,15,30] and the 
forward rate spline is expressed as a linear combina�on of the resul�ng B-splines. The coefficients of the 
linear combina�on are es�mated using the set of bonds. 

 The next sec�on defines cubic B-splines and sets out the cubic polynomial equa�ons that 
comprise them. The sec�on a�er that presents the set of B-splines derived from the maturity ranges. 
The exposi�ons in this chapter and the next will be in terms of general sets of knots, and a�er each stage 
the results will be applied to the specific knots from the maturity ranges that are actually used for the 
yield curves. 

 

 

 
7 Treatment of B-splines can be found in de Boor (1978) and Piegl and Tiller (1997). 
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B-Spline Defini�on 

 The usual approach for describing B-splines is to use a general recursion formula that applies to 
splines of any degree. However, here the degree is already chosen to be cubic, so it’s possible to write 
out directly the algebra of the cubic spline polynomials. Furthermore, although the algebra is extensive, 
it’s easier than general recursions. So that’s the approach used here. 

 To build the defini�on of B-splines, the first step is to recognize that a B-spline is completely 
determined by five knots 𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒.The five knots are sorted in ascending order, and they can be 
dis�nct or some of the knots can have duplicate values. In principle, any of the knots can be duplicated, 
but for the yield curves, it’s enough to assume that only the first or the last is duplicated and at least two 
of the five knots are dis�nct. As examples, the set of five knots [3,7,15,30,30] has the last knot 
duplicated once and [0,0,0,0,1½] has the first knot duplicated three �mes. 

 The next step in defining B-splines is to construct the following cubic polynomials from the five 
knots. The polynomials are func�ons of 𝜏𝜏 which designates maturity. If some of the knots are duplicated, 
the respec�ve polynomial doesn’t exist because of division by zero, but that has no effect on the 
resul�ng B-spline because that polynomial is ignored in subsequent calcula�ons as shown in the 
defini�on. 

                   𝐵𝐵I(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = (𝜏𝜏−𝑢𝑢𝑎𝑎)3

(𝑢𝑢𝑑𝑑−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑐𝑐−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑏𝑏−𝑢𝑢𝑎𝑎)
     (8.1a) 

                  𝐵𝐵II(𝜏𝜏;𝑢𝑢𝑎𝑎,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = (𝜏𝜏−𝑢𝑢𝑎𝑎)2(𝑢𝑢𝑐𝑐−𝜏𝜏)
(𝑢𝑢𝑑𝑑−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑐𝑐−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑐𝑐−𝑢𝑢𝑏𝑏)

+ (𝜏𝜏−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑑𝑑−𝜏𝜏)(𝜏𝜏−𝑢𝑢𝑏𝑏)
(𝑢𝑢𝑑𝑑−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑑𝑑−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑐𝑐−𝑢𝑢𝑏𝑏)

  (8.1b) 

                                                                  + (𝑢𝑢𝑒𝑒−𝜏𝜏)(𝜏𝜏−𝑢𝑢𝑏𝑏)2

(𝑢𝑢𝑒𝑒−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑑𝑑−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑐𝑐−𝑢𝑢𝑏𝑏)
 

                 𝐵𝐵III(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = (𝜏𝜏−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑑𝑑−𝜏𝜏)2

(𝑢𝑢𝑑𝑑−𝑢𝑢𝑎𝑎)(𝑢𝑢𝑑𝑑−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑑𝑑−𝑢𝑢𝑐𝑐)
+ (𝑢𝑢𝑒𝑒−𝜏𝜏)(𝜏𝜏−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑑𝑑−𝜏𝜏)

(𝑢𝑢𝑒𝑒−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑑𝑑−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑑𝑑−𝑢𝑢𝑐𝑐)
  (8.1c) 

                                                                   + (𝑢𝑢𝑒𝑒−𝜏𝜏)2(𝜏𝜏−𝑢𝑢𝑐𝑐)
(𝑢𝑢𝑒𝑒−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑒𝑒−𝑢𝑢𝑐𝑐)(𝑢𝑢𝑑𝑑−𝑢𝑢𝑐𝑐)

  

                  𝐵𝐵IV(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = (𝑢𝑢𝑒𝑒−𝜏𝜏)3

(𝑢𝑢𝑒𝑒−𝑢𝑢𝑏𝑏)(𝑢𝑢𝑒𝑒−𝑢𝑢𝑐𝑐)(𝑢𝑢𝑒𝑒−𝑢𝑢𝑑𝑑)
     (8.1d) 

 Using these polynomials, the defini�on of a B-spline 𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) is as follows: 

                                     𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = 0;  𝜏𝜏 < 𝑢𝑢𝑎𝑎     (8.2a) 

                                     𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = 𝐵𝐵I(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒); 𝑢𝑢𝑎𝑎 ≤ 𝜏𝜏 < 𝑢𝑢𝑏𝑏  (8.2b) 

                                     𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = 𝐵𝐵II(𝜏𝜏;𝑢𝑢𝑎𝑎,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒);  𝑢𝑢𝑏𝑏 ≤ 𝜏𝜏 < 𝑢𝑢𝑐𝑐  (8.2c) 

                                     𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = 𝐵𝐵III(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒);  𝑢𝑢𝑐𝑐 ≤ 𝜏𝜏 < 𝑢𝑢𝑑𝑑  (8.2d) 

                                     𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = 𝐵𝐵IV(𝜏𝜏;𝑢𝑢𝑎𝑎,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒); 𝑢𝑢𝑑𝑑 ≤ 𝜏𝜏 < 𝑢𝑢𝑒𝑒  (8.2e) 

                                     𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = 0;  𝜏𝜏 ≥ 𝑢𝑢𝑒𝑒;  𝑢𝑢𝑏𝑏 ≠ 𝑢𝑢𝑒𝑒    (8.2f) 

                                     𝐵𝐵(𝜏𝜏;𝑢𝑢𝑎𝑎 ,𝑢𝑢𝑏𝑏 ,𝑢𝑢𝑐𝑐 ,𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑒𝑒) = 1;  𝜏𝜏 ≥ 𝑢𝑢𝑒𝑒;  𝑢𝑢𝑏𝑏 = 𝑢𝑢𝑒𝑒    (8.2g) 
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 This defini�on is set up so that if two knots are duplicated, the respec�ve polynomial is omited. 
For example, if 𝑢𝑢𝑎𝑎 = 𝑢𝑢𝑏𝑏, Line (8.2b) can’t be true so it’s omited. 

 Line (8.2g) takes care of the special case in which the last four knots are the same. In that case 
the B-spline is given by 𝐵𝐵I alone with the value of unity at the last knot 𝑢𝑢𝑒𝑒 and at all maturi�es greater 
than 𝑢𝑢𝑒𝑒. This, in fact, is the configura�on of the final B-spline from the maturity ranges, as shown in the 
next sec�on. Se�ng the value of the final B-spline to unity beyond 𝑢𝑢𝑒𝑒 is different from the usual 
defini�on of B-splines in which all B-splines are set to zero beyond the last knot. Se�ng to unity is 
important for the long-term forward rate as will be clear in the next chapter. 

 

B-Splines for the Forward Rate 

 In this sec�on, the defini�on of B-splines is first applied to knots in yield curves in general and 
then to the knots derived from the maturity ranges. 

 To set out the B-splines in general terms not �ed to specific maturity ranges, let there be 𝑞𝑞 + 1 
dis�nct knots designated as [𝑢𝑢0,𝑢𝑢1, … ,𝑢𝑢𝑞𝑞]. It is assumed that 𝑞𝑞 ≥ 5 because at least six knots will be 
needed for a yield curve. The knots derived from the maturity ranges in the previous chapter are an 
example of these 𝑞𝑞 + 1 knots: [0,1½,3,7,15,30] with 𝑞𝑞 = 5. 

 From these 𝑞𝑞 + 1 knots it’s possible to derive 𝑞𝑞 + 3 B-splines by choosing sequen�al sets of five 
knots allowing for three duplicates at beginning and end and applying the B-spline defini�on in the 
previous sec�on. The first B-spline, designated 𝐵𝐵1(𝜏𝜏), is the B-spline given by the 5 knots 
[𝑢𝑢0,𝑢𝑢0,𝑢𝑢0,𝑢𝑢0,𝑢𝑢1]. The second B-spline, designated 𝐵𝐵2(𝜏𝜏), is the B-spline given by the 5 knots 
[𝑢𝑢0,𝑢𝑢0,𝑢𝑢0,𝑢𝑢1,𝑢𝑢2], and the third B-spline is given by [𝑢𝑢0,𝑢𝑢0,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3]. The last B-spline 𝐵𝐵𝑞𝑞+3(𝜏𝜏) is given 
by the knots �𝑢𝑢𝑞𝑞−1,𝑢𝑢𝑞𝑞 ,𝑢𝑢𝑞𝑞 ,𝑢𝑢𝑞𝑞 ,𝑢𝑢𝑞𝑞�. 

 For the specific case of the six knots from the maturity ranges, there are eight B-splines derived 
from the following eight sequences of five knots each: 

[0,0,0,0,1½] 

[0,0,0,1½,3] 

[0,0,1½,3,7] 

[0,1½,3,7,15] 

[1½,3,7,15,30] 

[3,7,15,30,30] 

[7,15,30,30,30] 

[15,30,30,30,30] 

 Given these sequences of knots, define the coefficients �̌�𝛽𝑘𝑘 ,𝑘𝑘 = 1, … , 𝑞𝑞 + 3 to be es�mated from 
the bond set. The forward rate is represented as a linear combina�on of the 𝑞𝑞 + 3 B-splines as follows: 

                                                                𝜙𝜙(𝜏𝜏) =  ∑ �̌�𝛽𝑘𝑘𝐵𝐵𝑘𝑘(𝜏𝜏)𝑞𝑞+3
𝑘𝑘=1      (8.3) 



43 
 

 Note that because of Equa�on 8.2g above, this equa�on gives a fixed 𝜙𝜙(𝜏𝜏) = �̌�𝛽𝑞𝑞+3for all 𝜏𝜏 ≥ 𝑢𝑢𝑞𝑞 
beyond the last knot. 

 

Summa�on of the B-Splines 

 An important feature of the B-splines that will be used in the next chapter is that they sum to 
unity at any maturity 𝜏𝜏 even beyond the furthest knot. This can be verified with algebra on the B-spline 
polynomials: 

                                                                     ∑ 𝐵𝐵𝑘𝑘(𝜏𝜏) = 1, 𝜏𝜏 ≥ 𝑢𝑢0
𝑞𝑞+3
𝑘𝑘=1      (8.4) 

 

Price Equa�on with B-Splines 

 Using this spline representa�on of the forward rate, the price equa�on can be writen as follows: 

                                                   𝑝𝑝 = ∑ exp�−∫ �∑ �̌�𝛽𝑘𝑘𝐵𝐵𝑘𝑘(𝛼𝛼)𝑞𝑞+3
𝑘𝑘=1 �𝜏𝜏𝑖𝑖

0 d𝛼𝛼�𝑐𝑐𝑖𝑖𝑛𝑛
𝑖𝑖=1     (8.5) 

This is a conven�onal price equa�on because it omits the regression variables, and also because the 
forward rate spline has no constraints. 

 Constraints on the forward rate spline are the subject of the next chapter. Without constraints, 
the spline can exhibit spurious movements. Especially important is the constraint at maturity 30 years, 
that not only ensures that the forward rate atains a value at the last maturity that is consistent with 
markets, but also enables bond yields to be projected out beyond 30 years maturity. 
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The B-Splines from the Maturity Ranges 

 The following chart depicts the eight B-splines given by the knots from the maturity ranges. The 
B-splines for the knot sequences from the maturity ranges are le� to right in the figure as shown by their 
humps: 

Figure 8.1 

 

 

 

 

 

 

 

 

 

 

 The B-splines in the figure are projected out through 40 years maturity for illustra�on. For actual 
applica�on to the projec�on range, they would be run out through 100 years maturity. 

 The figure shows that all eight B-splines are nonnega�ve. The first and last B-splines equal unity 
at zero and 30, respec�vely. Furthermore, the last B-spline remains fixed at unity for maturi�es above 30 
years while the other B-splines are zero. Therefore, the coefficient on the last B-spline will equal the 
fixed long-term forward rate as described in the next chapter. At each maturity, the ver�cal sum of all the 
B-splines is unity. The forward rate is given as a linear combina�on of the eight B-splines in this figure. 
However, before es�ma�ng the coefficients on this linear combina�on, the splines have to be 
constrained. 
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9. The Projec�on Range 

 

 

 

 
 This chapter describes the constraints on the B-splines that are needed to ensure smooth 
behavior of the forward rate at the nearest and furthest maturi�es, and that enable projec�on of the 
yield curve results in the projec�on range out through 100 years maturity. These constraints were 
developed in the Office of Financial Analysis. 

 There are three constraints. All three are linear and are implemented by replacing selected 
individual B-splines with linear combina�ons of the B-splines. Each constraint reduces the number of 
spline coefficients by one. Constraints need to be imposed because even though splines are flexible and 
fit bond data well, they can exhibit spurious behavior at the beginning maturity zero and at the furthest 
maturity 30 years. 

 The first constraint is near-term and requires that the forward rate have a zero second deriva�ve 
at maturity zero. This effec�vely linearizes the forward rate at zero. 

 The second two constraints are long-term and are located at the last maturity of 30 years. One of 
the major problems with conven�onal yield curve approaches is that they don’t impose any 
requirements at the 30-year point. As a result, the forward rate can vary significantly from market yields 
at 30 years. An example of this behavior, and a big problem in previous yield curve work, has been the 
fact that the forward rate for nominal yield curves frequently turned nega�ve near 30 years maturity. 

 The second two constraints first ensure that the forward rate setles down at 30 years maturity 
by requiring that the deriva�ve be zero. Second, the constraints cause the forward rate at 30 years 
maturity to equal the long-term forward rate, which is taken to be the average forward rate in the last 
maturity range of 15 to 30 years. These two constraints together ensure that the forward rate at 30 years 
maturity is consistent with market rates before 30 years maturity and can be projected forward in the 
projec�on range through 100 years maturity. In sum, the forward rate setles down to the long-term 
forward rate at 30 years maturity and remains at that rate with zero deriva�ve for all higher maturi�es. 
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Constraint at Zero Maturity 

 As discussed in Chapter 3, the minimum maturity for the set of bonds for es�ma�on is ½ year. 
Because of this minimum, there’s at least a half-year gap between the zero maturity point and the lowest 
maturity bond in the bond set. Without constraint, it’s possible that the forward rate spline could exhibit 
spurious behavior in this gap. 

 To reduce this possibility, the following linear constraint is imposed at zero maturity: 

                                                                       d
2𝜙𝜙(0)
d𝜏𝜏2

= 0      (9.1) 

This constraint linearizes the forward rate at zero thereby reducing spurious movements. 

 This constraint is imposed on the B-splines as follows. The following discussion will use nota�on 
from the last chapter and pertain to knots in general rather than the knots from the maturity ranges. 

 First, the only B-splines with nonzero second deriva�ves at the first knot 𝑢𝑢0 are the first three, so 
these are the only three that need to be considered. The formulas for the deriva�ves of these three B-
splines can be derived from the cubic polynomials in the previous chapter: 

                                         �̌�𝛽1
d2𝐵𝐵1(𝑢𝑢0)

d𝜏𝜏2
+ �̌�𝛽2

d2𝐵𝐵2(𝑢𝑢0)
d𝜏𝜏2

+ �̌�𝛽3
d2𝐵𝐵3(𝑢𝑢0)

d𝜏𝜏2
     (9.2) 

                                             = 6
(𝑢𝑢1−𝑢𝑢0

2)
�̌�𝛽1 + � −6

(𝑢𝑢2−𝑢𝑢0)(𝑢𝑢1−𝑢𝑢0)
+ −6

(𝑢𝑢1−𝑢𝑢0)2
� �̌�𝛽2 + 6

(𝑢𝑢2−𝑢𝑢0)(𝑢𝑢1−𝑢𝑢0)
�̌�𝛽3 

                                             = 0 

                                  ⇒ �̌�𝛽2 = (𝑢𝑢2−𝑢𝑢0)
(𝑢𝑢1−𝑢𝑢0)+(𝑢𝑢2−𝑢𝑢0)

�̌�𝛽1 + (𝑢𝑢1−𝑢𝑢0)
(𝑢𝑢1−𝑢𝑢0)+(𝑢𝑢2−𝑢𝑢0)

�̌�𝛽3 

Therefore, the constraint is implemented by replacing the first three B-splines [𝐵𝐵1(𝜏𝜏),𝐵𝐵2(𝜏𝜏),𝐵𝐵3(𝜏𝜏)] by 

�𝐵𝐵1(𝜏𝜏) + (𝑢𝑢2−𝑢𝑢0)
(𝑢𝑢1−𝑢𝑢0)+(𝑢𝑢2−𝑢𝑢0)𝐵𝐵2(𝜏𝜏),𝐵𝐵3(𝜏𝜏) + (𝑢𝑢1−𝑢𝑢0)

(𝑢𝑢1−𝑢𝑢0)+(𝑢𝑢2−𝑢𝑢0)𝐵𝐵2(𝜏𝜏)� and removing the second coefficient �̌�𝛽2, 

thereby reducing the number of coefficients �̌�𝛽𝑘𝑘.by one. Note that the two replacement constrained B-
splines are s�ll nonnega�ve and sum to the same result as the three original B-splines. 

 For the knots given by the maturity ranges, the first three B-splines are replaced by 

�𝐵𝐵1(𝜏𝜏) + 3
1.5+3

𝐵𝐵2(𝜏𝜏),𝐵𝐵3(𝜏𝜏) + 1.5
1.5+3

𝐵𝐵2(𝜏𝜏)�. 
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The Long-Term Forward Rate 

 Analogous to the zero maturity point, the value of the forward rate spline can also veer off 
course at 30 years maturity. In par�cular, some�mes there can be a hump in the forward rate at earlier 
maturi�es that causes the forward rate to plunge downward as it approaches 30 years maturity. This can 
result in the forward rate falling so rapidly that by the �me it reaches 30 years maturity, it is significantly 
different from market yields. Some�mes the forward rate can even turn nega�ve for nominal yield 
curves if the spline coefficients are not constrained to be posi�ve, a result that’s inconsistent with 
markets. A nega�ve forward rate was a significant problem in conven�onal yield curves in the past and 
reduced the usefulness of conven�onal results. 

 Therefore, it’s necessary to constrain the spline coefficients so that the forward rate at maturity 
30 years is consistent with market yields. In addi�on, the forward rate has to be constrained for 
maturi�es greater than 30 years so that yields can be projected. 

 The constraints at 30 years maturity are done in two stages. First, the deriva�ve of the forward 
rate spline is constrained to zero at maturity 30 to make the forward rate flaten out at that point: 

                                                                           d𝜙𝜙(30)
d𝜏𝜏

= 0      (9.3) 

 Second, the forward rate beyond 30 years maturity is assumed to be a constant long-term 
forward rate 𝜙𝜙∗. This is because there are insufficient bonds in the bond set to es�mate the forward rate 
beyond 30 years maturity, so the closest that can be done is to fix the long-term forward rate at a 
constant represen�ng the average forward rate beyond 30 years. For smoothness, the forward rate is 
made to atain the long-term forward rate at 30 years maturity and stay at that rate for all higher 
maturi�es. Moreover, because the deriva�ve of the forward rate at 30 years maturity is constrained to 
zero, the forward rate flatens out smoothly to the long-term forward rate at 30 years maturity. And the 
deriva�ve of the long-term forward rate for all maturi�es above 30 years con�nues to be zero. 

 So the ques�on is how to es�mate the long-term forward rate. In the yield curves done here, the 
long-term forward rate is taken to be the average forward rate in the last maturity range 15 years to 30 
years, and this is constrained to equal the forward rate at maturity 30 years. Note that this constraint is 
imposed simultaneous with the es�ma�on of the price equa�on: 

                                                                  𝜙𝜙∗ = ∫ 𝜙𝜙(𝛼𝛼)d𝛼𝛼30
𝜏𝜏=15
30−15

= 𝜙𝜙(30)     (9.4) 

 The reason for choosing this average for the long-term forward rate is that the maturi�es of 
bonds in the last maturity range are sufficiently distant in �me that market assessments of risk and 
reward for such bonds as indicated by the forward rate are similar to assessments for bonds above 30 
years maturity. 

 Furthermore, as required by Equa�on 8.2g in the B-spline defini�on, the final B-spline in the 
forward rate is unity at maturity 30 years and at all higher maturi�es, while the other B-splines are zero 
at these maturi�es. So once this constraint is imposed, the forward rate will remain at the long-term 
forward rate at 30 years maturity and beyond out through 100 years maturity. 
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 In normal market condi�ons, the long-term forward rate will be posi�ve. In the case of nominal 
bonds, the forward rate normally will be posi�ve from zero maturity up through 30 years maturity, 
ensuring that the average forward rate in the last maturity range will be posi�ve too. 

 In the case of TRC and TIPS, the forward rate will usually be posi�ve on average in the last 
maturity range even if the forward rate is nega�ve in earlier ranges. However, some�mes the TRC 
forward rate will be nega�ve in the last maturity range as noted in Chapter 5, with the consequence that 
the long-term forward rate can be nega�ve at 30 years maturity and remain nega�ve out through 100 
years maturity. 

 

The Long-Term Constraints 

 This sec�on lays out the implementa�on of the two long-term constraints. 

 The first constraint is the zero deriva�ve at the last knot. Analogous to the linear constraint at 
the first knot, this discussion will apply to knots in general and will not be specific to the knots from the 
maturity ranges. Deriva�ves for all B-splines except the last two are zero and don’t need to be dealt with. 
As in the case of the constraint at the first knot, formulas for the deriva�ves at the last knot can be 
derived from the cubic polynomials in the previous chapter: 

                                                �̌�𝛽𝑞𝑞+2
d𝐵𝐵𝑞𝑞+2(𝑢𝑢𝑞𝑞)

d𝜏𝜏
+ �̌�𝛽𝑞𝑞+3

d𝐵𝐵𝑞𝑞+3(𝑢𝑢𝑞𝑞)
d𝜏𝜏

     (9.5) 

                                                       = −3
(𝑢𝑢𝑞𝑞−𝑢𝑢𝑞𝑞−1)

�̌�𝛽𝑞𝑞+2 + 3
(𝑢𝑢𝑞𝑞−𝑢𝑢𝑞𝑞−1)

�̌�𝛽𝑞𝑞+3 

                                                       = 0 

                                            ⇒ �̌�𝛽𝑞𝑞+3 = �̌�𝛽𝑞𝑞+2 

Therefore, the constraint of zero deriva�ve at the last knot 𝑢𝑢𝑞𝑞 implies that the last two spline coefficients 
must be equal. So this constraint is imposed by replacing the last two B-splines 𝐵𝐵𝑞𝑞+2(𝜏𝜏) and 𝐵𝐵𝑞𝑞+3(𝜏𝜏) by 
their sum 𝐵𝐵𝑞𝑞+2(𝜏𝜏) + 𝐵𝐵𝑞𝑞+3(𝜏𝜏) and removing the last coefficient �̌�𝛽𝑞𝑞+3. 

 To impose the addi�onal constraint for compu�ng the long-term forward rate, it’s necessary to 
calculate the average forward rate in the last maturity range 15 years to 30 years maturity. Because the 
only B-splines with nonzero values in the last range are the last four 𝐵𝐵𝑘𝑘(𝜏𝜏),𝑘𝑘 = 𝑞𝑞, 𝑞𝑞 + 1, 𝑞𝑞 + 2, 𝑞𝑞 + 3, 
the other B-splines can be ignored. 

 To simplify nota�on, the 𝐴𝐴𝑘𝑘can be defined: 

                                         𝐴𝐴𝑘𝑘 = ∫ 𝐵𝐵𝑘𝑘(τ)d𝛼𝛼30
𝛼𝛼=15

30−15
,𝑘𝑘 = 𝑞𝑞, 𝑞𝑞 + 1, 𝑞𝑞 + 2, 𝑞𝑞 + 3    (9.6) 

Using Equa�on 8.4 on summing B-splines, this implies: 

                                          ∑ 𝐴𝐴𝑘𝑘
𝑞𝑞+3
𝑘𝑘=𝑞𝑞 =

∫ ∑ 𝐵𝐵𝑘𝑘(𝜏𝜏)d𝛼𝛼𝑞𝑞+3
𝑘𝑘=𝑞𝑞

30
𝛼𝛼=15

30−15
= ∫ 1dα30

𝛼𝛼=15
30−15

= 1    (9.7) 
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 The constraint requires the following, using Equa�on 8.2g, Equa�on 9.5, Equa�on 9.7, and the 
fact that 𝜙𝜙�𝑢𝑢𝑞𝑞� = �̌�𝛽𝑞𝑞+3: 

                                     �̌�𝛽𝑞𝑞𝐴𝐴𝑞𝑞 + �̌�𝛽𝑞𝑞+1𝐴𝐴𝑞𝑞+1 + 𝛽𝛽𝑞𝑞+2�𝐴𝐴𝑞𝑞+2 + 𝐴𝐴𝑞𝑞+3� = �̌�𝛽𝑞𝑞+2    (9.8) 

                             ⟹ 𝛽𝛽𝑞𝑞+2 = 𝐴𝐴𝑞𝑞
𝐴𝐴𝑞𝑞+𝐴𝐴𝑞𝑞+1

�̌�𝛽𝑞𝑞 + 𝐴𝐴𝑞𝑞+1
𝐴𝐴𝑞𝑞+𝐴𝐴𝑞𝑞+1

�̌�𝛽𝑞𝑞+1 

Therefore, both long-term constraints are implemented simultaneously by replacing the last four B-
splines [𝐵𝐵𝑞𝑞(𝜏𝜏),𝐵𝐵𝑞𝑞+1(𝜏𝜏),𝐵𝐵𝑞𝑞+2(𝜏𝜏),𝐵𝐵𝑞𝑞+3(𝜏𝜏), ] by the two constrained B-splines 

�𝐵𝐵𝑞𝑞(𝜏𝜏) + 𝐴𝐴𝑞𝑞
𝐴𝐴𝑞𝑞+𝐴𝐴𝑞𝑞+1

�𝐵𝐵𝑞𝑞+2(𝜏𝜏) + 𝐵𝐵𝑞𝑞+3(𝜏𝜏)� ,𝐵𝐵𝑞𝑞+1(𝜏𝜏) + 𝐴𝐴𝑞𝑞+1
𝐴𝐴𝑞𝑞+𝐴𝐴𝑞𝑞+1

�𝐵𝐵𝑞𝑞+2(𝜏𝜏) + 𝐵𝐵𝑞𝑞+3(𝜏𝜏)�� and removing the 

last two coefficients �̌�𝛽𝑞𝑞+2 and �̌�𝛽𝑞𝑞+3. 

 Pu�ng the three constraints together, including the one constraint at the first knot of zero and 
the two constraints at the last knot of 30, the number of constrained B-splines a�er replacing the 
original B-splines with the constrained B-splines is 𝑞𝑞. The set of constrained B-splines is given the 
nota�on 𝐵𝐵𝑘𝑘C(𝜏𝜏) with associated coefficients 𝛽𝛽𝑘𝑘, 𝑘𝑘 = 1, … , 𝑞𝑞. 

 Note that all the constrained B-splines are nonnega�ve, the same as the original unconstrained 
B-splines. This implies that if the coefficients 𝛽𝛽𝑘𝑘 are all posi�ve, as is expected with nominal bonds, the 
forward rate at all maturi�es is posi�ve and the discount func�on is declining in accord with Equa�on 
5.5. 

 

Applica�on to the Knots from the Maturity Ranges 

 These three constraints are applied as follows to the forward rate from the maturity ranges. The 
six knots from the maturity ranges [0,1½,3,7,15,30] are converted to five constrained B-splines 
𝐵𝐵𝑘𝑘C(𝜏𝜏), 𝑘𝑘 = 1, … ,5, as summarized in the following schema�c in the form of matrix mul�plica�on. In 

order to create this matrix, 
𝐴𝐴𝑞𝑞

𝐴𝐴𝑞𝑞+𝐴𝐴𝑞𝑞+1
 and 

𝐴𝐴𝑞𝑞+1
𝐴𝐴𝑞𝑞+𝐴𝐴𝑞𝑞+1

 have to be calculated: the respec�ve results to two 

decimal places are 0.24 and 0.76, both when the last knot is 30 and when it is 30.51 as used for Treasury 
securi�es. 

                             

⎣
⎢
⎢
⎢
⎢
⎡𝐵𝐵1

C(𝜏𝜏)
𝐵𝐵2C(𝜏𝜏)
𝐵𝐵3C(𝜏𝜏)
𝐵𝐵4C(𝜏𝜏)
𝐵𝐵5C(𝜏𝜏)⎦

⎥
⎥
⎥
⎥
⎤

=

⎝

⎜
⎛

1
0
0
0
0

       

0.67
0.33

0
0
0

       

0
1
0
0
0

      

0
0
 1
0
0

       

0
0
0
1
0

        

0
0
0
0
1

     

0
0
0

0.24
0.76

   

0
0
0

0.24
0.76⎠

⎟
⎞

 ∗  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐵𝐵1(𝜏𝜏)
𝐵𝐵2(𝜏𝜏)
𝐵𝐵3(𝜏𝜏)
𝐵𝐵4(𝜏𝜏)
𝐵𝐵5(𝜏𝜏)
𝐵𝐵6(𝜏𝜏)
𝐵𝐵7(𝜏𝜏)
𝐵𝐵8(𝜏𝜏)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 The next step is to write the price Equa�on (6.2) using the constrained B-splines. Because the 
price equa�on uses the integral of the forward rate, it is necessary to define a set of five integrated 
constrained B-splines 𝐵𝐵𝑘𝑘IC(𝜏𝜏) as follows: 
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                                               𝐵𝐵𝑘𝑘IC(𝜏𝜏) = ∫ 𝐵𝐵𝑘𝑘C(𝛼𝛼)d𝛼𝛼,𝑘𝑘 = 1, … ,5, 𝜏𝜏 ≥ 0𝜏𝜏
𝛼𝛼=0     (9.9) 

Because the B-splines are cubic polynomials, integra�on is straigh�orward: indefinite integrals of the 
cubic polynomials are computed as fourth-degree polynomials and the constant terms in the new 
polynomials are adjusted so that the integrals are con�nuous over the maturity ranges and the 
projec�on range. 

 Then, with the five integrated constrained B-splines, the extended price equa�on can be writen 
as: 

                                                𝑝𝑝 = ∑ exp𝑛𝑛
𝑖𝑖=1 �−∑ 𝛽𝛽𝑘𝑘𝐵𝐵𝑘𝑘IC(𝜏𝜏𝑖𝑖)5

𝑘𝑘=1 �𝑐𝑐𝑖𝑖 + ∑ 𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗𝑚𝑚
𝑗𝑗=1    (9.10) 

 This is the form of the price equa�on to be es�mated. It has five spline coefficients 𝛽𝛽𝑘𝑘 and 𝑚𝑚 
regression coefficients 𝜃𝜃𝑗𝑗. The spline coefficients have been described, and the next three chapters 
describe the regression variables. 

 

The Constrained B-Splines 

 The following Figure 9.1 depicts the five constrained B-splines: 

Figure 9.1 

 

 

 

 

 

 

 

 

 

 

 Because the five constrained B-splines are posi�ve linear combina�ons of the eight original B-
splines, the five constrained B-splines are nonnega�ve. Because of the constraints, the fourth and fi�h 
constrained B-splines at 30 years maturity are nonzero, which means that the long-term forward rate will 
be given by a combina�on of the es�mated coefficients for the forward rate on these constrained B-
splines. 

 Therefore, for nominal bonds, if the es�mated forward rate coefficients on the constrained B-
splines are posi�ve, the resul�ng forward rates will be posi�ve and the discount func�on will decline, all 
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in accord with the discussion in Chapter 5. And as shown in Chapter 13 on es�ma�on, for the nominal 
yield curves HQM and TNC, the forward rate coefficients are constrained to be posi�ve. 

 The following Figure 9.2 shows the five integrated constrained B-splines: 

Figure 9.2 

 

 

 

 

 

 

 

 

 

 

 The first three integrated constrained B-splines reach a constant at 30 years maturity and remain 
there for higher maturi�es, while the last two rise con�nuously beyond 30 years 

 

 

 The mathema�cal form for es�ma�on of the discount func�on and forward rate has now been 
described. The next three chapters define the regression variables. 
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10. The Hump Variable 

 

 

 

 
 This chapter describes the hump variable, which is the regression variable that captures the 
hump or higher level of yields o�en seen in standard bonds around 20 years maturity. The hump variable 
has been included in the TNC and TRC yield curves from the beginning going back through 1976 for TNC. 
The hump variable was added to the HQM yield curve in February 2024. The hump variable was 
developed in the Office of Financial Analysis. 

 The next sec�ons discuss the need for the hump variable and describe its construc�on. 

 

Purpose of the Hump Variable 

 Frequently, yields on bonds with maturi�es around 20 years are high rela�ve to yields on bonds 
around 10 years or 30 years maturity, that is, 20-year yields exhibit a hump. This doesn’t occur all the 
�me, but it occurs o�en enough that it is considered one of the characteris�cs of bond markets. 

 Various explana�ons have been suggested for the existence of the hump. The fact that it does 
not always occur would seem to indicate that it’s not inherently part of bond structure, but rather stems 
from factors separate from the bonds themselves. The best explana�on appears to be that bonds around 
20 years maturity are less liquid than bonds around 10 years or 30 years maturity, and therefore such 
bonds are less desirable with the result that they sell at lower prices and must offer higher yields. 

 One way that this difference in liquidity could come about is that the bond market is complex, 
and the complexity and size of the bond market make it efficient for traders to divide the market into 
parts so that trading ac�vity and market analysis can focus on a limited set of bonds rather than on all 
bonds at the same �me. This is a decision made by bond ins�tu�ons and doesn’t affect the value of 
individual cash flows from bonds of different maturi�es. In par�cular, traders have chosen to center 
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aten�on on 10-year and 30-year bonds as opposed to 20-year bonds, and this makes the 20-year bonds 
less liquid. 

 Regardless of the reason for the hump, it’s clear that the hump effect is not part of �me 
preference or the discount func�on. In par�cular, cash flows from 20-year bonds are no different from 
cash flows from other bonds, so �me preference does not affect them differently. Rather, it’s the fact 
that these cash flows are packaged into a 20-year coupon issue that is causing the hump. Therefore, the 
hump reflects other factors than �me preference and needs its own regression variable separate from 
the discount func�on. 

 It should also be noted that the source of the hump is in the set of standard bonds used in 
es�ma�on as set out in Chapter 4. A different set of bonds, such as bonds from a fully developed zero 
coupon market, might not have a hump. Nevertheless, because the hump can exist in the bond set that’s 
being used to es�mate, the hump must be taken into account with the regression variable. 

 The hump in bond yields does not always exist. Frequently there’s no hump at all, such as when 
liquidity concerns at 20 years maturity are small. 

 Or another possibility is that there is an inverse hump in which bond yields dip around 20 years 
maturity rather than rise. The inverse hump might stem from a market decision to issue bonds or sell 
exis�ng bonds, and the bonds chosen for sale are at 10 or 30 years maturity because it’s more 
convenient and more liquid to sell at those maturi�es rather than 20 years. As demonstrated below, the 
hump variable coefficient is nega�ve when there is a hump but turns posi�ve when there is an inverse 
hump. 

 Conven�onal yield curves that don’t have regression variables fold the hump effect into the 
discount func�on. This flatens out the hump and spreads the hump effect into long-term yields. If the 
hump is small or nonexistent, omi�ng the hump variable makes the resul�ng yield curve simpler and 
produces smoother spot rates. 

 However, if the hump is large, leaving out the hump variable can significantly distort the discount 
func�on, and in par�cular the omission can bias up yields in the projec�on range that should depend on 
�me preference alone. The hump variable is needed to eliminate this bias. 

 Another way to look at the hump variable is that it picks up addi�onal market movements in the 
last maturity range. Because the last maturity range of 15 to 30 years is large, there are market 
movements in this range that need another variable to be captured. The hump effect is the most 
important feature of this range separate from �me preference itself. Therefore, the hump variable works 
in tandem with the discount func�on to capture market movements in this big range. 

 This implies that the discount func�on and forward rate as given by the five constrained B-
splines together with the hump variable can be viewed as an integrated mathema�cal structure for yield 
curve es�ma�on. This structure, which comprises six coefficients and therefore has six degrees of 
freedom, has worked very well over the last half century in capturing the behavior of U.S. bonds of high 
credit quality. Without modifica�on, for five decades this structure has tracked high quality corporate 
bonds as well as both nominal and real Treasury securi�es. 
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Construc�on of the Hump Variable 

 Analogous to the maturity ranges, the construc�on of the hump variable assumes that the 
market focuses on central maturi�es and bond pricing at other maturi�es is done rela�ve to the central 
maturi�es. For the hump, the central maturi�es are 10, 20, and 30 years maturity, and the hump 
variable assumes that at various �mes there may be factors that affect the prices of bonds at 20 years 
maturity rela�ve to the prices of bonds at 10 or 30 years maturity. 

 To start, the hump variable is set to unity at 20 years maturity and set to zero for maturi�es up 
through 10 years and for maturi�es 30 years and greater. This reflects the fact that the effect on bond 
price because of the hump occurs at the central maturity of 20 years rela�ve to 10 years and 30 years. 
Then the value of the hump variable at other maturi�es greater than 10 years or less than 30 years is 
made to depend upon how close these maturi�es are to 20 years. 

 Therefore, to obtain a smooth hump func�on, the value of the hump variable for any bond is 
given by the cubic B-spline 2 × 𝐵𝐵(𝜏𝜏𝑛𝑛; 10,10,20,30,30), where, following previous nota�on, 𝜏𝜏𝑛𝑛 is the 
maturity of the bond. The B-spline is mul�plied by 2 to set it to unity at its maximum value at 20 years 
maturity. The hump variable starts at zero at 10 years maturity and below, rises to unity at 20 years, and 
then declines back to zero at 30 years and beyond. The hump coefficient to be es�mated in the price 
equa�on is denoted by 𝜃𝜃HUMP and the value of the hump variable for a par�cular bond as a func�on of 
the bond’s maturity is denoted by 𝑥𝑥HUMP(𝜏𝜏𝑛𝑛), which gives: 

                                    𝜃𝜃HUMP 𝑥𝑥HUMP(𝜏𝜏𝑛𝑛) = 𝜃𝜃HUMP × 2 × 𝐵𝐵(𝜏𝜏𝑛𝑛; 10,10,20,30,30)   (10.1) 

 If there is a hump in the price equa�on at a par�cular �me, it’s clear that the coefficient on the 
hump variable 𝜃𝜃HUMP must be nega�ve because the existence of the hump reduces the price and 
increases yield around 20 years maturity. Conversely, if the hump is inverse, the coefficient will be 
posi�ve because in that case the presence of the hump raises price and reduces yield. And, of course, 
when there is no hump, the coefficient will be near zero. Therefore, the hump variable coefficient 
provides a test as to the existence of the hump, and the t-ra�o on the coefficient shows its significance. 

 It should be noted that the actual posi�on of the hump in a par or spot yield curve is determined 
by the discount func�on and hump in combina�on. In par�cular, even though the 20-year maturity point 
gives the maximum value unity of the hump variable, the posi�on of the hump in the yield curve may 
not necessarily be at 20. This will be shown in results later. 
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Picture of the Hump Variable 

 The following chart depicts the hump variable star�ng at zero maturity and running out through 
40 years maturity. 

Figure 10.1 

 

 

 

 

 

 

 

 

 

The hump variable is con�nuous and smooth for the span 10 years to 30 years, star�ng at zero and rising 
to unity at maturity 20 years, then falling back down to zero. It’s symmetric around 20 years maturity. 
The maximum effect of the hump is at maturity 20 years. 
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11. HQM Credit Variables 

 

 

 

 
 This chapter describes the two credit variables in the HQM yield curve. The credit variables are 
regression variables in HQM. The credit variables were developed in the Office of Financial Analysis. 

 The purpose of the credit variables is set out and the construc�on of the variables is shown. The 
credit variables are in addi�on to the hump variable. Therefore, the HQM yield curve has a total of three 
regression variables which comprise the hump variable plus the two credit variables, with the result that 
the HQM yield curve has eight parameters to be es�mated which comprise the five coefficients on the 
splines plus the three coefficients on the regression variables.7F

8 

 

Purpose of the Credit Variables 

 In the Pension Protec�on Act (PPA) discussed in Chapter 3, the idea of the HQM yield curve was 
to have a single yield curve that represents the average yields weighted by market size of high quality 
bonds rated A, AA, and AAA. Conven�onal yield curves would typically have approached this problem by 
calcula�ng three separate yield curves, one for each quality AAA, AA, and A, and compu�ng the 
weighted average. 

 However, the problem with separate yield curves is that the number of bonds is small for AAA 
and not so large for AA either, with the result that individual curves can be unstable. Nevertheless, even 

 
8 In some of the previous versions of the HQM yield curve, a variable was included to capture the effects of call 
op�ons in bonds with a call schedule: see U.S. Department of the Treasury (2005a, 2005b, and 2006).  The results 
from this variable demonstrated that effects of calls can be modeled with regression variables and without using 
op�on adjusted spreads. However, the final version of the HQM yield curve omits these types of callable bonds and 
this variable, except that end-calls are included in the HQM yield curve without a regression variable as discussed 
in Chapter 4. 
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if unstable, the shapes of the three curves are similar because the markets for the three quali�es are 
similar. So it’s efficient to make use of the similarity by pu�ng bonds from all three ra�ngs into a single 
price equa�on producing one discount func�on and hump variable that applies to bonds with market-
weighted average ra�ng. Moreover, the resul�ng blended yield curve eliminates the instability of 
individual yield curves and so it is robust in capturing the overall structure of the en�re high quality bond 
market. 

 When pu�ng three quali�es together, it’s s�ll necessary to account for differences in the 
quali�es. This can be done with two credit variables added to the discount func�on/hump variable in the 
price equa�on. This is an example of regression variables in which the bond set for es�ma�on does not 
have to be homogeneous, and characteris�cs of different bonds, in this case quality characteris�cs, can 
be picked up by the regression variables. The next sec�ons specify the credit variables. 

 Therefore, in the HQM price equa�on, the discount func�on/hump variable is assumed to apply 
to bonds with market-weighted average quality across the three quali�es AAA, AA, and A. None of the 
bonds for es�ma�on has such market-weighted quality. So the two credit variables adjust the price of 
each bond used in es�ma�on to what it would be if the bond were of weighted average quality, and the 
resul�ng adjusted bond is then used to es�mate the weighted average discount func�on/hump variable 
that is then used to construct yield curves that comply with the Pension Protec�on Act. 

 Taking advantage of bond similari�es across quali�es by using all bonds simultaneously is 
analogous to the econometric technique of seemingly unrelated regression. In seemingly unrelated 
regression, similari�es in different data sets are exploited to provide a more robust result by fi�ng the 
model to the data sets all at the same �me. 

 

Credit Shares 

 As discussed, two credit variables are needed when merging the three bond quali�es into a 
single price equa�on. The credit variables are based on the rela�ve par amounts outstanding of the 
three quali�es of the bonds, that is, the credit shares. So the credit shares need to be discussed first. 

 To begin, let ΓAAA,ΓAA, and ΓA, be the sum of the par amounts outstanding for the bonds in the 
bond set used in es�ma�on at the respec�ve quali�es AAA, AA, and A. Then define the two credit 
shares: 

                                                                     𝜔𝜔1 = ΓAA
ΓAAA+ΓAA

      (11.1a) 

                                                                     𝜔𝜔2 = ΓA
ΓAAA+ΓAA+ΓA

     (11.1b) 

The first share 𝜔𝜔1 is the total par amount outstanding of AA bonds rela�ve to AAA plus AA bonds, while 
the second share 𝜔𝜔2 is the total par amount outstanding of A bonds rela�ve to all the high quality bonds 
AAA, AA, and A. 

 Recently, the first credit share 𝜔𝜔1 has been a bit below 90 percent and the second credit share 
𝜔𝜔2 has been around 75 percent. 
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Construc�ng the Credit Variables 

 Using the two credit shares 𝜔𝜔1 and 𝜔𝜔2, the two credit variables can be constructed. The 
respec�ve coefficients on the credit variables are 𝜃𝜃CR1 and 𝜃𝜃CR2 which are es�mated in the price 
equa�on. 

 𝜃𝜃CR1 is the difference between the price of an AAA-rated bond and the price of an AA-rated 
bond per year of maturity of the bond. So for a bond with 10 years maturity, the difference in price 
between AAA and AA is 𝜃𝜃CR1𝜏𝜏𝑛𝑛 = 10 × 𝜃𝜃CR1, where as before 𝜏𝜏𝑛𝑛 is the maturity of the bond. The price 
difference is analogous to insurance in that the amount of protec�on that a higher ra�ng provides to a 
bondholder is greater as the length of �me of the bond, that is maturity, is greater. Consequently, the 
price of the higher ra�ng rises with maturity. 

 Analogously, 𝜃𝜃CR2 is the difference per year of maturity between the price of a bond of market-
weighted average AAA and AA quality ignoring A bonds and the price of an A-rated bond. 

 Usually both 𝜃𝜃CR1 and 𝜃𝜃CR2 are posi�ve. However, it’s possible for these coefficients to be 
nega�ve. For example, in the crisis of 2008, 𝜃𝜃CR1 was nega�ve on various dates in October and 
November 2008 and in the early months of 2009. Nega�ve values for 𝜃𝜃CR1 mean that AA bonds have a 
higher price than AAA bonds, and could indicate that bond quali�es as perceived by markets are 
different from ra�ngs assigned to the bonds. The following discussion and the construc�on of the credit 
variables is s�ll valid if one or both of these coefficients is nega�ve. 

 Using these data items, the price 𝑝𝑝 of an AAA bond with maturity 𝜏𝜏𝑛𝑛 can be adjusted to what it 
would be if the bond had market-weighted average quality. 

 First, the AAA price is adjusted to be market-weighted average AAA-AA quality. If 𝜔𝜔1 is near zero, 
there aren’t many AA-rated bonds, so the weighted average price is already near AAA and litle 
adjustment is needed. In contrast, if 𝜔𝜔1 is near unity, a large adjustment in the price is needed because 
the average is near AA but the bond price is AAA. So the amount of adjustment depends on 𝜔𝜔1, and 
consequently, the adjustment of 𝑝𝑝 to provide a market-weighted average AAA-AA price is to subtract 
𝜔𝜔1𝜃𝜃CR1𝜏𝜏𝑛𝑛 from 𝑝𝑝. Note that the adjustment is linear in 𝜔𝜔1. 

 Finally, to complete the adjustment of price on an AAA bond, the market-weighted average AAA-
AA price 𝑝𝑝 − 𝜔𝜔1𝜃𝜃CR1𝜏𝜏𝑛𝑛 is adjusted to be the price for market-weighted average quality of all HQM 
bonds. The reasoning is analogous to the previous paragraph using a linear adjustment in 𝜔𝜔2, and so the 
market-weighted average price is 𝑝𝑝 − 𝜔𝜔1𝜃𝜃CR1𝜏𝜏𝑛𝑛 − 𝜔𝜔2𝜃𝜃CR2𝜏𝜏𝑛𝑛. 

 To con�nue for the price on an AA-rated bond: following analogous reasoning, for an AA-rated 
bond the market-weighted average price is 𝑝𝑝 + (1 −𝜔𝜔1)𝜃𝜃CR1𝜏𝜏𝑛𝑛 − 𝜔𝜔2𝜃𝜃CR2𝜏𝜏𝑛𝑛. The price is first adjusted 
to equal the market-weighted average AAA-AA price, and then adjusted to get the market-weighted 
average price for all HQM bonds. 

 Finally, for an A-rated bond, the market-weighted average price is 𝑝𝑝 + (1 −𝜔𝜔2)𝜃𝜃CR2𝜏𝜏𝑛𝑛. In this 
case, the closer 𝜔𝜔2 is to zero, the more the price must be adjusted to get the market-weighted average 
HQM price. In contrast, the closer 𝜔𝜔2 is to unity, the more the average is already A quality, so litle 
adjustment of the price is necessary. 
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 To summarize, the two credit variables are 𝑥𝑥CR1𝜏𝜏𝑛𝑛 with coefficient 𝜃𝜃CR1 and 𝑥𝑥CR2𝜏𝜏𝑛𝑛 with 
coefficient 𝜃𝜃CR2, where: 

 

                                              𝑥𝑥CR1 =  𝜔𝜔1 for an AAA-rated bond; 

                                                        = (𝜔𝜔1 − 1) for an AA-rated bond; 

                                                        = 0 for an A-rated bond. 

                                              𝑥𝑥CR2 = 𝜔𝜔2 for an AAA- or AA-rated bond; 

                                                        = (𝜔𝜔2 − 1) for an A-rated bond. 

 These two variables 𝑥𝑥CR1𝜏𝜏𝑛𝑛 and 𝑥𝑥CR2𝜏𝜏𝑛𝑛 are added to the HQM price equa�on along with the 
hump variable, and all coefficients including 𝜃𝜃CR1 and 𝜃𝜃CR2 are es�mated. Note that the credit variables 
are derived by straigh�orward linear scaling: the variables and associated coefficients are linear, as is the 
scaling by maturity. More complicated variables could be devised, but given the low signal to noise ra�o 
of bond data especially corporate bond data, addi�onal complica�ons can lead to spurious results. A 
general rule of yield curve regression variables is that simpler variables work best in bringing out 
paterns and characteris�cs of bond markets. 
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12. TNC On-the-Run Variables 

 

 

 

 
 This chapter describes the regression variables used in the TNC nominal Treasury yield curve. 
The TNC regression variables were developed in the Office of Financial Analysis. 

 There are seven on-the-run dummies in the TNC yield curve plus seven first off-the run 
dummies. The TNC yield curve also includes the hump variable, so the total number of variables is 15. 
Together with the five spline coefficients, the total number of coefficients to be es�mated in TNC is 20. 

 In contrast to nominal Treasury coupon issues, there are no dis�nc�ons between on-the-run and 
off-the-run issues for TIPS. Therefore, the TRC yield curve doesn’t have any dummy variables and has a 
total of six coefficients to be es�mated, comprising the five spline coefficients and one hump coefficient. 

 This chapter also describes regression variables used for historical TNC data going back through 
1976. The features of the historical data that required these variables no longer exist in Treasury coupon 
issues at the present �me, so these variables are no longer used. The goal of the TNC and TRC yield 
curves is to include in the price equa�on at any �me all Treasury coupon issues both historical and 
current that are already issued and available for trading at that �me regardless of when they were 
issued. This includes both on-the-run and off-the-run securi�es as well as callable bonds and flower 
bonds, securi�es with odd first coupons, and securi�es of every term ranging from 1 year through 40 
years. The regression variables make it possible to include all issues by sor�ng out differences in features 
among the issues. 

 The hump variable is also included for historical Treasury data. However, the hump variable is 
le� out before December 1985 because before that date there aren’t enough Treasury securi�es with 
long maturi�es and without call schedules to es�mate the hump. 
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 The historical results show that the XRM methodology provides stable results that capture 
market movements over the last half century. In par�cular, the ill-condi�oned numerical results and 
mul�ple convergence points o�en seen in other yield curve approaches are not found in XRM. 

 

On-the-Run Variables 

 The most recently issued Treasury nominal coupon issues of each term are called on-the-run 
coupon issues. At present, the on-the-run securi�es are the most recently issued notes of maturi�es 2 
years, 3 years, 5 years, 7 years, and 10 years, and the most recently issued bonds of maturi�es 20 years 
and 30 years. Treasury securi�es that aren’t on-the-run are called off-the-run. 

 In the past, Treasury also issued an on-the-run note at 4 years maturity, but this note has not 
been issued a�er December 1990. Other odd maturi�es were also issued in the past, but they were not 
considered on-the-run. 

 Note that at any point in �me all the on-the-run securi�es have actually been issued, that is, the 
point in �me is on or a�er the issue date of each security. There is another set of recent Treasuries at any 
�me that are traded before issue, and they are called when-issued securi�es. At the present �me, when-
issued securi�es are not included in the TNC or TRC yield curves and not discussed here. 

 The seven current maturi�es of the on-the-run securi�es are included in the central maturi�es 
used to define the maturity ranges in Chapter 7. The choice of these seven maturi�es for on-the-run 
Treasury securi�es indicates the importance of these maturi�es in markets and shows why these 
maturi�es are central maturi�es in market trading and in delinea�ng the maturity ranges. 

 The reason for the interest in on-the-run securi�es is that they are generally thought to be 
priced differently from off-the-run. The reasons for the difference in pricing are analogous to the hump 
variable: on-the-run securi�es are thought to be more liquid than other Treasuries and are traded for 
special purposes. Market ins�tu�ons are set up for special trading of on-the-run thereby causing special 
effects on the on-the-run prices. So even though the individual cash flows of on-the-run securi�es are no 
different from off-the-run and subject to the same �me preference, the package of cash flows into an on-
the-run Treasury security causes the security to be priced differently. 

 And because on-the-run securi�es are priced differently, they cannot be mixed in with off-the-
run in the price equa�on. Therefore, analogous to the hump variable, each on-the-run security is given 
its own dummy variable. The inclusion of the dummy has the effect of removing the on-the-run security 
from the price equa�on es�ma�on, and at the same �me provides an es�mate of the on-the-run price 
rela�ve to off-the-run that can be used for calcula�ons such as comparison of on-the-run yield to off-the-
run or examina�on of the significance of the on-the-run coefficient. Conven�onal yield curve approaches 
that don’t have regression variables remove the on-the-run securi�es completely from the price 
equa�on, thereby providing no es�mates of their prices. 

 The removal of on-the-run securi�es from the yield curve es�ma�on by the dummies implies 
that the resul�ng TNC yield curve is off-the-run, that is, it provides yield es�mates that pertain to the off-
the-run Treasury market. In calcula�ng the TNC yield curves as described in Chapter 14, these dummy 
variables are set to zero. 
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 Coefficients on the dummies do find par�cular use in calcula�ng on-the-run yields at the seven 
on-the-run maturi�es, and selected on-the-run TNC es�mates are published on the website. It should be 
noted that these on-the-run es�mates pertain to the seven on-the-run maturi�es exactly. The actual on-
the-run security in the market for a any term has a maturity that is a bit less than the original term 
because it is already issued. For example, the 10-year on-the-run note in the market has a maturity a bit 
less than 10 years. However, the 10-year on-the-run TNC es�mate pertains to a note of exactly 10 years 
maturity. This is important because o�en there is a desire to es�mate what the yield would be on a 
newly issued on-the-run security of the full term, and the dummy variable provides this informa�on. 

 In addi�on to the seven on-the-run securi�es, markets believe that the seven first off-the-run 
securi�es for the same seven maturi�es are also priced differently. First off-the-run means the second 
most recent issue of each term. Therefore, the seven first off-the-run securi�es are also given their own 
dummy variables, which also takes them out of the price equa�on es�ma�on and provides separate 
price es�mates for them. 

 There’s disagreement as to the �me when on-the-run securi�es were dis�nguished by market 
par�cipants from off-the-run. It appears that this happened when Treasury markets became sufficiently 
regularized in the early 1980s. Historical TNC yield curves include the on-the-run and first off-the-run 
dummies back through the beginning of TNC data in 1976. However, published on-the-run TNC es�mates 
using the coefficients of the dummy variables start in 1986. 

 In summary, in addi�on to the hump variable, the TNC yield curve has seven on-the-run 
dummies that are set to unity for the respec�ve security and zero otherwise 

                                               𝑥𝑥ON2,𝑥𝑥ON3,𝑥𝑥ON5,𝑥𝑥ON7,𝑥𝑥ON10,𝑥𝑥ON20,𝑥𝑥ON30  

with respec�ve coefficients 

                                              𝜃𝜃ON2,𝜃𝜃ON3,𝜃𝜃ON5,𝜃𝜃ON7,𝜃𝜃ON10,𝜃𝜃ON20,𝜃𝜃ON30 

and first-off-the fun dummies 

                                              𝑥𝑥OFF2,𝑥𝑥OFF3,𝑥𝑥OFF5,𝑥𝑥OFF7,𝑥𝑥OFF10,𝑥𝑥OFF20,𝑥𝑥OFF30 

with respec�ve coefficients 

                                             𝜃𝜃OFF2,𝜃𝜃OFF3,𝜃𝜃OFF5,𝜃𝜃OFF7,𝜃𝜃OFF10,𝜃𝜃OFF20,𝜃𝜃OFF30 
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Callable Treasury Bonds 

 These Treasury bonds have a call op�on that enables them to be redeemed by Treasury before 
maturity. There were 28 such bonds available for trade in markets at some �me during the period 1976-
2002, with a minimum of 11 such bonds at any �me. The terms of the callable bonds could be 20, 25, 30, 
and 31 years. Each of the callable bonds could be called at any �me during the last 5 years before 
maturity, except for one old 25-year bond that matured in May 1985 and could be called during the last 
10 years before maturity. Of the 28 callable bonds, 24 were actually called and 4 were allowed to mature 
without being called. 

 The callable bonds can’t be mixed in with noncallable bonds because the presence of the calls 
distorts their prices. Therefore, the conven�onal yield curve approach is to remove all of the callables 
from the es�ma�on of the price equa�on. However, this is a big distor�on because the callable bonds 
cons�tute a major source of informa�on about historical bond markets. For example, in the period 1976 
through 1984, all traded bonds with more than 20 years un�l maturity (except possibly for flower bonds, 
see below) were callable, so to omit them is to omit the en�re long end of the yield curve. Even as late 
as 1995, the en�re sec�on of the Treasury yield curve from about 10 years maturity to 20 years maturity 
contains only callable bonds. 

 Therefore, to achieve the goal of the TNC yield curve to include all Treasury coupon issues, the 
callable bonds are included with a regression variable that captures the effects on price of the presence 
of the call op�on. This variable is defined as the number of years remaining in the life of the bond when 
the bond might be called mul�plied by the annual coupon rate of the bond. If the bond is sufficiently old 
that it could be called at any �me a�er the setlement date of the yield curve, then this variable is 
defined as the number of years to maturity of the bond �mes coupon rate. This variable is a measure of 
risk: it measures the amount of coupon payments that the bondholder risks in buying the bond if the 
bond is called before maturity. 

 This variable captures the reduc�on in bond price caused by the existence of the call, especially 
from December 1985 forward when there are sufficient numbers of noncallable bonds so that this 
variable can be easily iden�fied. This is a simple variable, but as seen in the other regression variables, 
simple variables work best in yield curves because there is a lot of noise in bond data, and complicated 
regression variables, while they may seem good in theory, can o�en pick up spurious effects. A simple 
variable picks up strong effects that come through the noise of the data and dominate the movements of 
yield curves. 

 

Estate Tax An�cipa�on Bonds 

 This is another set of historical Treasury bonds that conven�onal yield curves leave out. These 
bonds if held by the estate of a deceased bondholder enable the estate to redeem them at par to pay 
federal estate taxes. These bonds are typically called flower bonds. 

 There were 11 flower bonds available for trade in the period 1976-2002, and the last flower 
bond matured in November, 1998. The terms of these bonds ranged from 20 years to 40 years. Five of 
the flower bonds were callable, so they overlapped the 28 callable bonds discussed in the previous 
sec�on. 
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 These bonds are also important for bond analysis and should be included in the price equa�on. 
However, similar to the case of callable bonds, the estate tax effects in these bonds distort the prices of 
these bonds such that they can’t be mixed in with other Treasury securi�es. 

 So analogous to callable bonds, flower bonds are included with a regression variable to pick up 
estate tax effects on prices. This variable is defined as years to maturity, or if the bond is callable, the 
average of years to maturity and years to the first possible call date. The idea is that the longer is the 
�me to maturity of the bond, the longer the bond provides insurance for estate taxes against a fall in 
bond prices. 

 Again this is a simple regression variable, but it captures well the greater demand for flower 
bonds because of their estate tax effects and the consequent higher prices that bondholders were willing 
to pay for them. 

 

 

 

 The HQM, TNC, and TRC price equa�ons are now specified, including the spline for the discount 
func�on and forward rate and the regression variables and their coefficients. The next chapter will show 
how to es�mate these coefficients from the bond set in Chapter 4. And the two chapters a�er that will 
derive yield curves using the es�mates. 
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13. Es�ma�on 

 

 

 

 
 This chapter describes the es�ma�on of the price equa�on from the bond set. The price 
equa�on was set out as Equa�on (9.10) and is reproduced below as Equa�on (13.1): 

                                         𝑝𝑝 = ∑ exp𝑛𝑛
𝑖𝑖=1 �−∑ 𝛽𝛽𝑘𝑘𝐵𝐵𝑘𝑘IC(𝜏𝜏𝑖𝑖)5

𝑘𝑘=1 �𝑐𝑐𝑖𝑖 + ∑ 𝜃𝜃𝑗𝑗𝑥𝑥𝑗𝑗𝑚𝑚
𝑗𝑗=1     (13.1) 

 As previously discussed, each of the three yield curves HQM, TNC, and TRC contains the five 
constrained B-splines described in Chapter 9 comprising five coefficients plus the hump variable in 
Chapter 10 for an addi�onal coefficient. In addi�on, the HQM yield curve also contains the two credit 
variables for a total of eight coefficients to be es�mated, and the TNC yield curve also contains the 14 
dummies for a total of 20 coefficients to be es�mated. The TRC yield curve doesn’t have addi�onal 
regression variables and contains the B-splines plus the hump variable for a total of six coefficients to be 
es�mated. 

 The method of es�ma�on of the coefficients is nonlinear least squares. This method chooses the 
es�mates of the coefficients so as to minimize the sum of squared residuals between the prices of the 
bonds in the bond set and the fited prices given by the coefficients. Use of nonlinear least squares 
enables standard sta�s�cal tests to be performed; in par�cular, the usual covariance matrix can be 
calculated, and t-ra�os can be calculated for coefficients such as the hump variable and the credit 
variables to test for significance at a par�cular �me and to compare movements over �me.8F

9 

 In addi�on, the fact that each of the three yield curves uses the same five constrained B-splines 
implies that the coefficients on the B-splines can be directly compared across yield curves both at a point 
in �me and over �me. This provides addi�onal market informa�on. 

 
9 For discussion of es�ma�on techniques, see Gill, Murray, and Wright (1981) and Judge, Griffiths, Hill, Luetkepohl, 
and Lee (1985). The basic technique used for es�ma�on is Gauss-Newton with a line search. With the 
mathema�cal form chosen here for the yield curves, this technique converges rapidly on the bond sets of data. 
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 For the HQM yield curve, it should be noted that the yield curve is fited directly to the high 
quality bond set without the use of a preliminary Treasury yield curve. Some�mes other yield curve work 
has es�mated a corporate yield curve from the Treasury yield curve. However, such an approach 
substan�ally increases the complexity of the curve fi�ng process and reduces accuracy. 

 Before calcula�ng the yield curves, the bond set data are weighted, as described in the next 
sec�on. 

 

Weigh�ng of the Bond Data before Es�ma�on 

 The weigh�ng of the bond data for the HQM yield curve is applied in two stages: 

 In the first stage of weigh�ng, equal weights are assigned to commercial paper rates, and the par 
amounts outstanding of the bonds are rescaled so that their sum equals the sum of the weights on the 
commercial paper rates. Then the data are mul�plied by the square root of their weights, that is, the 
commercial paper weights and the rescaled par amounts. This produces the result that the squared 
residuals of the bond prices in the least squares fit of the bond price equa�on are weighted by par 
amounts outstanding. 

 The purpose of this first stage is to give greater weight to larger bonds because they are more 
important in the market and generally more liquid. And commercial paper rates are assigned a big 
weight in order to anchor the yield curve at the short end of maturi�es. 

 In the second stage of weigh�ng for the HQM yield curve, for bonds in the bond set with 
Macaulay dura�on greater than unity, the weighted bond data from the first stage are divided by the 
square root of dura�on. The purpose of the second stage is to correct for heteroscedas�city: bonds with 
higher dura�on are more vola�le, with the result that the error terms of such bonds in the price 
equa�on have higher variance. 

 In contrast to the HQM yield curve, the two Treasury yield curves TNC and TRC do not use the 
first stage of weigh�ng. First, there are no short-term data analogous to commercial paper rates that can 
be included in the Treasury yield curves. Also, the Treasury market is so large and liquid that it’s not 
necessary or useful to weight individual issues by size. 

 However, the second stage of weigh�ng is done for Treasuries: specifically, before es�ma�on, 
the Treasury bond data are weighted by the square root of the inverse of Macaulay dura�on. 

 

Es�ma�on 

 A�er weigh�ng, the es�ma�on of the yield curves is done by nonlinear least squares. In 
addi�on, for the nominal yield curves HQM and TNC, the spline coefficients are constrained to be 
posi�ve by pu�ng a low floor equal to a tenth of a basis point below the acceptable values of the 
coefficients. 

 The reason for this constraint is that es�ma�on of nominal yield curves assumes that the spline 
coefficients are posi�ve in order to avoid the unacceptable anomaly of nega�ve forward rates. Without 
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this constraint, there can be �mes when short-term interest rates are low and the B-splines can have 
small spurious movements near zero maturity that can cause a spline coefficient and a forward rate to be 
slightly nega�ve. This constraint eliminates such an anomaly. The constraint is not applied to TIPS in the 
TRC yield curve because the forward rate for TIPS can be nega�ve. 

 The algorithm used for computa�on of the nonlinear least squares es�mates is Gauss-Newton 
with a line search. The XRM methodology is very stable, and the algorithm typically converges with only 
about five itera�ons at most and no line search. Frequently, other yield curve approaches do not 
converge so robustly, and some don’t converge at all. The use of the maturity ranges helps for stability. 

 

 

 The next two chapters will set out yield curves computed from the price equa�on using the 
coefficient es�mates described in this chapter. 
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14. Spot and Par Yield Curves 

 

 

 

 
 This chapter shows how to calculate yield curves from the price equa�on using the five spline 
coefficients and the coefficients for the hump variable and other regression variables. The values of the 
coefficients can be given by the least squares es�mates in the previous chapter or by other es�mates. 
Yield curve calcula�ons using regression variables were developed in the Office of Financial Analysis. 

 As already defined, a yield curve shows the yield at each maturity for a specific type of bond in a 
chosen sector of the bond market. In this discussion, the sectors are high quality corporate, nominal 
Treasury, and TIPS. The two types of bonds are the standard bond as described in Chapter 4 selling at par 
for which par yields are calculated and the zero coupon bond for which spot rates are calculated. 

 The next sec�on sets out preliminary informa�on on the yield curves, and the following sec�ons 
present par and spot yield curves and forward rates. 

 

Yield Curve Structure 

 The star�ng point for a yield curve is the price equa�on for the chosen sector of the bond 
market and its associated coefficients. 

 The price equa�on pertains to the setlement date for which the yield curve is done. The yield 
curve provides yields for future maturi�es rela�ve to the setlement date, and so the maturi�es must be 
specified. In this discussion, the maturi�es start with the setlement date and extend out for 100 years, 
with the first 30 years of maturi�es pertaining to bonds exis�ng on the setlement date and the 
maturi�es from 30 years through 100 years making up the projec�on range. In addi�on, in the 
discussions of long-term convergence at the end of the chapter, the maturi�es are assumed theore�cally 
to go out to infinity. 
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 Analogous to the discussion in Chapter 4, the �me period of the maturi�es from setlement date 
to 100 years is broken into 200 half-years star�ng at ½ year and increasing by half-years out through 100 
years. Therefore, the maturi�es in years for which the yields in the yield curve are calculated take on the 
200 values 1

2
, 1,1 1

2
, … ,100. For each yield in the yield curve, the maturity of the yield in terms of years is 

designated by 𝜏𝜏, so 𝜏𝜏 takes on the values ½ year through 100 years. Because the first maturity is exactly 
1
2
, accrued interest is zero. 

 In principle, yields in the yield curve could be produced for any maturi�es, and it will be 
apparent how the formulas can be extended to apply to every maturity. But for most applica�ons the set 
of 200 half-year maturi�es is sufficient. 

 In previous chapters, the cash flows 𝑐𝑐𝑖𝑖 for individual bonds and associated years from setlement 
to payments 𝜏𝜏𝑖𝑖 take account of weekends and holidays. In contrast, the maturi�es for yield curves are 
here set at half-year intervals, so weekends and holidays are ignored. This follows market prac�ce which 
ignores weekends and holidays when calcula�ng yields as discussed in Chapter 4. 

 The yield curve formulas will be writen for a generic price equa�on which could be HQM, TNC, 
or TRC, although differences among these sectors will be noted. The combined value of the regression 
variables mul�plied by their es�mated coefficients at maturity 𝜏𝜏 will be writen as 𝑉𝑉R(𝜏𝜏). In the general 
case, price equa�ons can include any regression terms, and the formulas will be similarly general. 
However, for HQM, TNC, and TRC as presently constructed, the only variable included in 𝑉𝑉R(𝜏𝜏) is the 
hump coefficient �mes the hump variable value. For HQM, the credit variables are all set to zero in the 
yield curve calcula�on because the discount func�on/hump variable by construc�on pertains to market-
weighted average high quality. For TNC, the dummy variables are set to zero because the TNC yield curve 
is off-the-run. For TRC, there are no other regression variables than the hump. 

 And to reemphasize, the method of yield calcula�on for the yield curves is semiannual 
compounding. This is the standard in bond markets, and by employing this method, the data produced 
by the yield curves can be directly used in financial market applica�ons. Some bond analysis uses 
con�nuous compounding or some other form of compounding, but such results aren’t consistent with 
actual bond markets. The only excep�on to the use of semiannual compounding is the case of breakeven 
infla�on rates in the next chapter, which use annual compounding to be consistent with the market 
standard for infla�on data. 

 

The Par Yield Curve 

 The type of bond for the par yield curve is the standard bond described in Chapter 4 selling at 
par with the following assump�ons. At each maturity 𝜏𝜏, the principal of this bond is 100, and its coupon 

rate as a percentage is 𝜅𝜅(𝜏𝜏). This implies that the bond pays 𝜅𝜅(𝜏𝜏)
2

 at the end of each half-year up through 
𝜏𝜏 years maturity plus the principal of 100 at maturity. The first payment date is one half-year from 
setlement and there is no accrued interest. 

 In addi�on, the type of bond for the par yield curve is a bond selling at par. A bond selling at par 
can be defined in three ways: flat or clean price excluding accrued interest equals 100, full or dirty price 
including accrued interest equals 100, or coupon rate equals yield. Because it is assumed that there is no 
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accrued interest for the bond being using here for the par yield curve, the first two defini�ons are the 
same, and as shown below, the third also turns out to be the same. So the type of bond for the par yield 
curve can be described simply as a standard bond whose price is 100. 

 With these defini�ons, the following price equa�on uses the discount func�on 𝛿𝛿(𝜏𝜏) to show the 
coupon rate 𝜅𝜅(𝜏𝜏) for a standard bond selling at par: 

                                               100 = 𝜅𝜅(𝜏𝜏)
2
∑ 𝛿𝛿 �𝜄𝜄

2
�2𝜏𝜏

𝜄𝜄=1 + 100𝛿𝛿(𝜏𝜏) + 𝑉𝑉R(𝜏𝜏)    (14.1a) 

Rearranging this equa�on gives the coupon rate as follows: 

                                                      𝜅𝜅(𝜏𝜏) = 2 × 100(1−𝛿𝛿(𝜏𝜏))−𝑉𝑉R(𝜏𝜏)
∑ 𝛿𝛿�𝜄𝜄2�
2𝜏𝜏
𝜄𝜄=1

     (14.1b) 

 This equa�on shows that the coupon rate for the nominal bonds in HQM and TNC is normally 
posi�ve. The denominator of this equa�on is posi�ve because the discount func�on is posi�ve. And 
apart from regression variables, the numerator is also posi�ve for nominal bonds because the discount 
func�on is declining for such bonds such that 1 − 𝛿𝛿(𝜏𝜏) is posi�ve. 

 However, with the inclusion of regression variables, the numerator even for nominal bonds can 
in principle be nega�ve. Nevertheless, the only regression variable included for either the HQM or TNC 
yield curve is the hump variable. This is because, as noted, the credit variables are set to zero when 
calcula�ng the HQM yield curve and the on-the-run dummies are set to zero when calcula�ng the TNC 
yield curve. 

 And if there is a hump, the term 𝑉𝑉R(𝜏𝜏) will be nega�ve ensuring a posi�ve numerator. This 
makes sense because the presence of a hump in the yield curve implies a hump in coupon rates. On the 
other hand, if the hump is inverse, in all normal circumstances the hump will be small. Consequently, the 
numerator is assumed to be posi�ve for nominal bonds, and this implies that the coupon rate for a 
nominal bond selling at par is also posi�ve. 

 Even though the on-the-run dummies are set to zero in calcula�ng the TNC yield curve, the 
values of the dummies may be used in calcula�ng the coupon rate for selected on-the-run maturi�es. 
For example, to calculate the 10-year on-the-run coupon rate and compare it to the off-the-run coupon 
rate, the coefficient on the 10-year dummy is used along with 𝜏𝜏 = 10. However, in every normal 
circumstance, the on-the-run effects are small rela�ve to the yield curve as a whole, so again the 
numerator is assumed to be posi�ve. 

 In contrast to the HQM and TNC, the TRC real coupon rate can be nonposi�ve. This is because 
the TRC discount func�on can be above unity, as shown in Chapter 5, and even apart from regression 
variables, this can make the numerator nega�ve. 

 As a general cau�on, for all yield curves it’s important to analyze whether the regression 
variables are distor�ng the coupon rates, especially if addi�onal regression variables are included 
beyond what’s used here. The fact that XRM allows for regression terms means that in principle any 
regression variables can be inserted. If the resul�ng yield curves come out unreasonable, such as with 
unexpected nega�ve coupon rates, the solu�on can usually be found by reexamining the bond data and 
the specifica�on of the variables. 
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 Using the coupon rate given by Equa�on (14.1b), it’s possible to calculate the par yield 𝑦𝑦(𝜏𝜏), that 
is, the yield on a bond selling at par, as follows. The par yield is the value of 𝑦𝑦(𝜏𝜏) that solves the 
following equa�on. This equa�on is the same as Equa�on (4.7) in Chapter 4: 

                                                  100 = 𝜅𝜅(𝜏𝜏)
2
∑ 1

�1+𝑦𝑦(𝜏𝜏)
200�

𝜄𝜄
2𝜏𝜏
𝜄𝜄=1 + 100

�1+𝑦𝑦(𝜏𝜏)
200�

2𝜏𝜏     (14.2) 

Using the fact that  

                                             ∑ 1

�1+𝑦𝑦(𝜏𝜏)
200�

𝜄𝜄
2𝜏𝜏
𝜄𝜄=1 � 1

�1+𝑦𝑦(𝜏𝜏)
200�

− 1� = 1

�1+𝑦𝑦(𝜏𝜏)
200�

2𝜏𝜏+1 −
1

�1+𝑦𝑦(𝜏𝜏)
200�

                

the solu�on to Equa�on (14.2) is 

                                                                       𝑦𝑦(𝜏𝜏) = 𝜅𝜅(𝜏𝜏)      (14.3) 

The par yield equals the coupon rate. So all that is necessary to derive the par yield curve is to compute 
the coupon rate at all maturi�es. This result confirms the defini�on given above that for standard bonds 
and for the specifica�on of the par yield curve being used here, when the clean price is 100 the coupon 
rate equals the yield. 

 It should be noted that even though Equa�on (14.1b) gives the coupon rate required for a bond 
to sell at par, it’s possible that at a par�cular �me no bond in the market actually has this coupon rate. 
For example, in the case of TIPS, the coupon rate of actual securi�es is always posi�ve, so if a nega�ve 
coupon rate is required for a par bond, a par bond cannot exist. 

 Nevertheless, the main purpose of the par yield curve is to be an indicator of bond yields at 
different maturi�es at a par�cular �me for all bonds regardless of coupon rates, and as such to show 
market condi�ons. The par yield curve works well for this purpose even if no actual par bonds exist, as 
demonstrated in later chapters showing results with market data. Some type of bond must be chosen to 
do the yield curve, and the par yield curve is the standard market concept. 

 Moreover, the par yield curve provides the framework for construc�ng spot rates that are 
consistent with market yields. It is through the par yield curve that the spot rates are computed. This is 
done in the next sec�on. 

 

The Spot Yield Curve 

 The type of bond for the spot yield curve is a zero coupon bond, that is, a bond with a single 
payment of the principal 100 at maturity and no coupon payments. The spot yield curve gives the spot 
rate for such bonds at each of the 200 maturi�es from ½ year through 100 years. Because there are no 
coupons, there is, of course, no accrued interest. The spot rate is calculated following market conven�on 
with semiannual compounding using the following formula, where the price of the bond is 𝑝𝑝, the 
maturity of the bond is 𝜏𝜏, and the spot rate as a percent is 𝑟𝑟(𝜏𝜏). This is the same as Equa�on (4.6) in 
Chapter 4: 

                                                                           𝑝𝑝 = 100

�1+𝑟𝑟(𝜏𝜏)
200�

2𝜏𝜏      (14.4) 



72 
 

 The price equa�on from which the par yield curve was derived was constructed for standard 
bonds. This same price equa�on will be used for zero coupon bonds, and the spot rate will be calculated 
so as to be consistent with this price equa�on and therefore with par yields. Consistency means that the 
spot rate can be used to price standard bonds and the same result will be obtained as with the price 
equa�on. Therefore, consistency means that the spot rate will give the same results as a market for zero 
coupon bonds even if such a market does not exist. For example, there’s no developed market for zero 
coupon corporate bonds, but spot rates from the HQM yield curve show results if such a market did 
exist. Moreover, spot rates that are consistent with standard bonds can be approximated in prac�ce with 
combina�ons of standard bonds. 

 Specifically, the spot rate is consistent with the par yield curve if the individual payments from a 
standard par bond can be discounted by the spot rates and summed up and the sum equals 100. The 
following formula sets out this consistency requirement for the spot rate 𝑟𝑟(𝜏𝜏): 

                                                     100 = 𝜅𝜅(𝜏𝜏)
2
∑ 1

�1+
𝑟𝑟�𝜄𝜄2�
200 �

𝜄𝜄
2𝜏𝜏
𝜄𝜄=1 + 100

�1+𝑟𝑟(𝜏𝜏)
200�

2𝜏𝜏    (14.5) 

 Going back to Equa�on (14.1a), the first thing to note about this equa�on is that if the 
regression variables are zero at every maturity 𝜏𝜏, that is, 𝑉𝑉R(𝜏𝜏) = 0 for all 𝜏𝜏, the spot rate 𝑟𝑟(𝜏𝜏) at each 
maturity 𝜏𝜏 that is consistent with the price equa�on and discount func�on is the discount spot rate 𝑟𝑟D(𝜏𝜏) 
from Equa�on (5.7a). This is because the discount spot rate is derived directly from the inverse of the 
discount func�on and ignores the regression variables. 

 However, if regression variables are not zero, they must be taken into account in the calcula�on 
of the spot rate because they affect the coupon rate from Equa�on (14.1b). The first step in doing this is 
to recognize from Equa�on (14.5) that the first spot rate at maturity ½ year is the same as the first 
coupon rate. A�er that, the rest of the spot rates are calculated sequen�ally for successive maturi�es 
one at a �me by using the spot rates at lower maturi�es. The procedure is shown below: 

                                            𝑟𝑟(𝜏𝜏) = 𝜅𝜅(𝜏𝜏), 𝜏𝜏 = 0.5       (14.6a) 

                                           𝑟𝑟(𝜏𝜏) = 200 ×

⎝

⎜
⎜
⎛

⎝

⎜⎜
⎛ 𝜅𝜅(𝜏𝜏)

2 +100

100−𝜅𝜅(𝜏𝜏)
2 ∑ 1

�1+
𝑟𝑟�𝜄𝜄2�
200 �

𝜄𝜄
2𝜏𝜏−1
𝜄𝜄=1

⎠

⎟⎟
⎞

1
2𝜏𝜏

− 1

⎠

⎟
⎟
⎞

, 𝜏𝜏 > 0.5  (14.6b) 

 A general way to determine the sign of the spot rate in this procedure is to recognize from 
Equa�on (14.5) that the sign of the spot rate is the same as the sign of the coupon rate at each maturity. 
This can be seen by recognizing that if 𝑟𝑟(𝜏𝜏) = 0, the right side of Equa�on (14.5) will be greater than 
100 if 𝜅𝜅(𝜏𝜏) > 0 and it will be less than 100 if 𝜅𝜅(𝜏𝜏) < 0. So to make both sides of the equa�on equal, 
𝑟𝑟(𝜏𝜏) must be raised from zero when the coupon rate is posi�ve and lowered from zero when it is 
nega�ve. This logic works for nominal yield curves and TIPS. 
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The Forward Spot Rate 

 The forward spot rate for future bonds can be calculated from the spot rate. The approach to do 
this is to create a synthe�c future zero coupon bond by buying and selling zero coupon bonds at present. 
Of course, if a fully developed spot market doesn’t exist, synthe�c future bonds can’t be fully realized 
and can only be approximated by bonds that are actually available. Nevertheless, the forward spot rate 
shows what such future bonds would be expected to look like. 

 One use of the forward spot rate is to measure market expecta�ons of future interest rates. 
However, this measure may be biased up by a term premium that reflects future uncertainty about 
interest rates, which leads lenders to demand higher interest rates to compensate. 

 The forward spot rate must be dis�nguished from the forward rate 𝜙𝜙(𝜏𝜏) presented earlier in 
connec�on with the discount func�on. The main dis�nc�on is that the forward spot rate incorporates 
the effects of regression variables whereas 𝜙𝜙(𝜏𝜏) comes from the discount func�on alone. If there were 
no regression variables, the forward rate 𝜙𝜙(𝜏𝜏) would conceptually be the same as the forward spot rate, 
although 𝜙𝜙(𝜏𝜏) is instantaneous while the forward spot rate pertains to periods of �me. 

 In order to calculate the forward spot rate, the spot rate 𝑟𝑟(𝜏𝜏) can be expanded to include a 
second �me variable that indicates number of years in the future when the zero coupon bond begins. So 
the spot rate can be denoted as 𝑟𝑟(𝜏𝜏1, 𝜏𝜏2), which is the spot rate with a maturity of 𝜏𝜏1 years beginning 𝜏𝜏2 
years in the future; that is, the forward spot rate for 𝜏𝜏1 years 𝜏𝜏2 years hence. In this nota�on, the spot 
rate beginning in the present is denoted as 𝑟𝑟(𝜏𝜏1, 0). 

 For the forward spot rate, this nota�on implies: 

                                    �1 + 𝑟𝑟(𝜏𝜏1+𝜏𝜏2,0)
200

�
2(𝜏𝜏1+𝜏𝜏2)
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�
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   (14.7a) 

                                                 ⇒  𝑟𝑟(𝜏𝜏1, 𝜏𝜏2) = 200 ×  ��
�1+𝑟𝑟(𝜏𝜏1+𝜏𝜏2,0)
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Convergence of the Par Yield 

 This sec�on derives the convergence of the par yield to the long-term par yield 𝜅𝜅∗when maturity 
goes to infinity. The deriva�on in this sec�on assumes that the values of the regression variables 𝑉𝑉R(𝜏𝜏) 
are zero for 𝜏𝜏 > 𝜏𝜏∗, where 𝜏𝜏∗ = 30 years maturity. The deriva�on uses Equa�on (14.1b) above and the 
long-term forward rate 𝜙𝜙∗. The analysis in this sec�on pertains to 𝜙𝜙∗ > 0. As men�oned in Chapter 5, 
the cases for TIPS in which 𝜙𝜙∗ < 0 or 𝜙𝜙∗ = 0 are not normal in markets and are not analyzed. Any 
convergence analysis in such cases tends to be unstable and inaccurate because these cases arise from 
temporary market anomalies. 

 For 𝜙𝜙∗ > 0, the first step is to write down the discount func�on for 𝜏𝜏 ≥ 𝜏𝜏∗ following Equa�on 
(5.6): 

                                                          𝛿𝛿(𝜏𝜏) = δ(𝜏𝜏∗) exp�−𝜙𝜙∗(𝜏𝜏 − 𝜏𝜏∗)�    (14.8) 

 For convergence, the numerator and denominator of Equa�on (14.1b) can be analyzed 
separately. Using Equa�on (14.8), the numerator converges to 200 as 𝜏𝜏 goes to infinity. 

 For 𝜏𝜏 > 𝜏𝜏∗, again using Equa�on (14.8), the denominator can be writen as 

                                                    ∑ 𝛿𝛿 �𝜄𝜄
2
� + 𝛿𝛿(𝜏𝜏∗)∑ exp �−𝜙𝜙∗𝜁𝜁

2
�2(𝜏𝜏−𝜏𝜏∗)

𝜁𝜁=1
2𝜏𝜏∗
𝜄𝜄=1  

 Using the fact that the last part of the denominator is a geometric series, the denominator 
converges to: 

                              ∑ 𝛿𝛿 �𝜄𝜄
2
� + 𝛿𝛿(𝜏𝜏∗)∑ exp �−𝜙𝜙∗𝜁𝜁

2
�∞

𝜁𝜁=1
2𝜏𝜏∗
𝜄𝜄=1 = ∑ 𝛿𝛿 �𝜄𝜄

2
�+ 𝛿𝛿(𝜏𝜏∗) 1

exp�𝜙𝜙
∗
2 �−1

2𝜏𝜏∗
𝜄𝜄=1   (14.9) 

 Pu�ng numerator and denominator together, this gives: 

                                                            𝜅𝜅∗ = 200
∑ 𝛿𝛿�𝜄𝜄2�+𝛿𝛿(𝜏𝜏∗) 1

exp�𝜙𝜙
∗
2 �−1

2𝜏𝜏∗
𝜄𝜄=1

               (14.10a) 

 Therefore, in contrast to the long-term discount spot rate 𝑟𝑟D∗, the long-term par yield 𝜅𝜅∗ does not 
necessarily equal 𝜙𝜙∗. 

 However, if 𝜏𝜏∗ = 0 so that 𝜙𝜙∗ is constant at all maturi�es, Equa�on (14.10a) becomes: 

                                                             𝜅𝜅∗ = 200 × �exp �𝜙𝜙
∗

2
� − 1�              (14.10b) 

which is the same as Equa�on (5.10a). So in the special case of a constant long-term forward rate for all 
maturi�es, the par yield converges to this constant. 
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Convergence of the Spot Rate 

 The discussion in Chapter 5 has already shown that the discount spot rate converges to the long-
term forward rate as maturity goes to infinity. This sec�on shows that the spot rate including effects of 
the regression variables also converges to the long-term forward rate. As in the previous sec�on, the 
deriva�on in this sec�on assumes that the regression variables are zero for maturi�es above 30 years 
and assumes 𝜙𝜙∗ > 0. 

 The first step is to put Equa�ons (14.1a) and (14.5) together because they both equal 100, with 
the discount func�on in Equa�on (14.1a) writen in terms of the discount spot rate: 

                          𝜅𝜅(𝜏𝜏)
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𝜄𝜄=1 + 100

�1+𝑟𝑟𝐷𝐷(𝜏𝜏)
200 �

2𝜏𝜏 + 𝑉𝑉R(𝜏𝜏)  (14.11) 

 The following analysis uses the nota�on: 

                                                            ΔS(𝜏𝜏) = 1

�1+𝑟𝑟(𝜏𝜏)
200�

2𝜏𝜏 −
1

�1+𝑟𝑟D(𝜏𝜏)
200 �

2𝜏𝜏     (14.12) 

ΔS(𝜏𝜏) is the difference between the discount func�on computed from the spot rate with the regression 
variables and the regular discount func�on 𝛿𝛿(𝜏𝜏). Convergence of the spot rate means that as maturity 
goes to infinity, ΔS(𝜏𝜏) goes to zero. 

 Inser�ng Equa�on (14.12) into Equa�on (14.11) and rearranging gives: 

                                      �𝜅𝜅(𝜏𝜏)
2

+ 100)�ΔS(𝜏𝜏) = −𝜅𝜅(𝜏𝜏)
2
∑ ΔS �

𝜄𝜄
2
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𝜄𝜄=1 (𝜏𝜏)   (14.13) 

The summa�on term in this equa�on can be simplified by wri�ng Equa�on (14.13) for the previous half-
year 𝜏𝜏 − 1

2
 and rearranging: 
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2
∑ Δs �

𝜄𝜄
2
� = −100ΔS �𝜏𝜏 −

1
2
� + 𝑉𝑉R2𝜏𝜏−1

𝜄𝜄=1 �𝜏𝜏 − 1
2
�   (14.14) 

Inser�ng Equa�on (14.14) into Equa�on (14.13) gives: 
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 As 𝜏𝜏 goes to infinity, 𝜅𝜅(𝜏𝜏) goes to 𝜅𝜅∗ which is the long-term par yield defined in the previous 
sec�on, and 𝑉𝑉R(𝜏𝜏) is zero. So for large 𝜏𝜏: 

                                                               ΔS(𝜏𝜏) ≈ − 100
𝜅𝜅∗
2 +100

ΔS �𝜏𝜏 −
1
2
�     (14.16) 

This is a difference equa�on with coefficient less than unity in absolute value, so it converges to zero. 

 Consequently, the long-term spot rate 𝑟𝑟∗ to which the spot rate 𝑟𝑟(𝜏𝜏) converges equals the long-
term discount spot rate 𝑟𝑟D∗ to which the discount spot rate 𝑟𝑟D(𝜏𝜏) converges, and they both equal the 
long-term forward rate 𝜙𝜙∗. 

 



76 
 

 

 

15. The TBI Curve 

 

 

 

 
 This chapter con�nues the examina�on of spot rates to derive the Treasury Breakeven Infla�on 
(TBI) Curve. As described in Chapter 3, the TBI curve combines the TNC and TRC yield curves to generate 
the infla�on rate that equates returns on nominal Treasury securi�es and TIPS. Markets call this infla�on 
rate the breakeven infla�on rate. 

 The first sec�on in this chapter defines the breakeven infla�on rate as it is derived in the TBI 
curve. Sec�ons a�er that examine features of the TBI rate and compute the forward breakeven rate. 

 

The TBI Curve 

 This is the defini�on of breakeven infla�on: breakeven infla�on over a period is the infla�on rate 
that if realized, would equate over that period the real return for nominal Treasury securi�es and the 
real return for TIPS. 

 Using the spot rate deriva�ons from the previous chapter, let 𝑟𝑟N(𝜏𝜏) be the spot rate for nominal 
Treasury securi�es with maturity 𝜏𝜏 and 𝑟𝑟R(𝜏𝜏) be the spot rate for TIPS. Let 𝑟𝑟P(𝜏𝜏) be the infla�on rate 
from the present through maturity 𝜏𝜏. As done previously, the two spot rates are semiannually 
compounded, but, in contrast, the infla�on rate is annually compounded in accord with market prac�ce. 
The infla�on measure for TIPS and 𝑟𝑟P(𝜏𝜏) is the (not seasonally adjusted) Consumer Price Index for All 
Urban Consumers (CPI-U). 

 By this defini�on, the breakeven infla�on rate equates the real return received at maturity 𝜏𝜏 by 
inves�ng $1 in nominal Treasuries and defla�ng by the infla�on rate and the real return received at 𝜏𝜏 by 
inves�ng $1 in TIPS. Consequently, if the breakeven infla�on rate is realized, the real returns from both 
markets are equal. 
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 The following equa�ons calculate the breakeven infla�on rate following this defini�on. The le�-
hand side of the first equa�on is the return on nominal Treasuries deflated by infla�on and the right-
hand side is the return on TIPS. 
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     (15.1a) 

                                                           ⇒  𝑟𝑟P(𝜏𝜏) = 100 × ��
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200 �
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 The defini�on of breakeven infla�on implies that the breakeven infla�on rate approximates 
market expecta�ons of infla�on. This is because returns in nominal and real Treasury markets would be 
different if expecta�ons diverged from breakeven infla�on, with the consequence that trading of 
Treasuries would cause them to be made equal. The primary use of breakeven infla�on is to measure 
infla�onary expecta�ons in the market. 

 Even so, there are factors that can cause breakeven infla�on to differ from expecta�ons. The 
most important factor is that infla�on uncertainty increases the risk of the return on nominal Treasuries. 
Returns on TIPS don’t have this risk because TIPS returns don’t depend on infla�onary expecta�ons. 
Because of this risk, nominal Treasuries contain a term premium that pushes up returns rela�ve to TIPS, 
with the result that the breakeven infla�on rate is biased up rela�ve to what markets actually expect. 
This bias must be taken into account when using breakeven infla�on to monitor expecta�ons. 
Nevertheless, when calculated using XRM methodology, it appears that this bias is lower than o�en 
thought. 

 In addi�on, there are special factors that can cause returns to differ regardless of infla�onary 
expecta�ons. For example, liquidity differences between nominal and real Treasury markets are 
some�mes more important than rela�ve returns. This can be especially true at short maturi�es. 

 

Addi�onal Issues for Breakeven Infla�on 

 Users of breakeven infla�on o�en compute it simply as the difference between the yield on a 
nominal Treasury coupon issue and the yield on a TIPS coupon issue of the same maturity. There are 
several problems with this. 

 The biggest problem is that this computa�on uses yields and not spot rates. If the purpose of 
breakeven infla�on is to equate returns over a period for nominal and real Treasuries, the previous 
sec�on showed that the appropriate interest rate measure is the respec�ve spot rates. Spot rates give 
amounts received at the end of a period, whereas yields give streams of coupon payments received 
throughout the period. The use of yields biases down the measure of breakeven infla�on. 

 Moreover, the dura�on of the nominal Treasury yield is shorter than the TIPS yield for the same 
maturity. This is because the TIPS yield provides larger nominal cash flows as maturity rises. So in this 
sense, nominal and real Treasury yields aren’t comparable. Spot rates, in contrast, at a given maturity for 
real and nominal have the same dura�on and it is equal to the maturity. 
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 Another problem is that the nominal Treasury coupon issue used for this calcula�on is typically 
on-the-run, which may be more liquid than the TIPS coupon issue and may also bias down the breakeven 
calcula�on. In contrast, the TBI breakeven rate uses off-the-run securi�es in TNC that do not have special 
on-the-run characteris�cs and are similar to TRC securi�es. Therefore, this downward bias is eliminated. 

 And, of course, a simple subtrac�on of two yields is incorrect as demonstrated in the last two 
equa�ons. And also breakeven infla�on should be annually compounded as opposed to semiannually 
compounded as is typical for yields. 

 

The Forward Breakeven Rate 

 Analogous to the forward spot rate in the previous chapter, the forward TBI breakeven infla�on 
rate can be calculated. The forward TBI rate can be used as an indicator of expected infla�on in future 
periods. 

 As in the case of the forward spot rate, the forward TBI rate may be biased up by a term 
premium, and this term premium may increase for future periods further out that are considered riskier. 

 Analogous to the forward spot rate, the TBI rate 𝑟𝑟P(𝜏𝜏) can be expanded to include a second �me 
variable that indicates number of years in the future when the infla�on begins. So the TBI rate can be 
denoted as 𝑟𝑟P(𝜏𝜏1, 𝜏𝜏2), which is the TBI rate over a �me of 𝜏𝜏1 years beginning 𝜏𝜏2 years in the future; that 
is, the forward TBI rate for 𝜏𝜏1 years 𝜏𝜏2 years hence. In this nota�on, the TBI rate beginning in the present 
has 𝜏𝜏2 = 0. 

 For the forward TBI rate, using annual compounding, this nota�on implies: 
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16. Selected HQM and TNC Results 

 

 

 

 
 This chapter and the next two chapters present selected results from calculated yield curves that 
illustrate the concepts in earlier chapters. This chapter concentrates on the nominal HQM and TNC yield 
curves and presents results for Friday August 30, 2024, which was the last business day in August and is 
representa�ve of recent market trading behavior. 

 The date of the yield curves is 08/30/2024 because that is the date of the bond trades that are 
used for es�ma�on. For both yield curves, the setlement date is the next business day, which is 
September 3, 2024 a�er allowing for Labor Day. 

 The first sec�on in this chapter describes the HQM yield curve on 08/30/2024 and the second 
sec�on describes the TNC yield curve. The sec�ons following the first two present charts. 

 

The HQM Yield Curve on 08/30/2024 

 The HQM yield curve on this date was computed using 3,738 securi�es including 3,731 bonds 
and 7 AA commercial paper rates from the Federal Reserve. Convergence in the computa�on was 
achieved with 4 itera�ons, showing the stability of the XRM methodology. 

 The 3,731 bonds include 73 AAA rated, 652 AA rated, and 3006 A rated. The two credit shares 𝜔𝜔1 
and 𝜔𝜔2 are 89.2 percent for AA bonds rela�ve to AAA+AA and 75.4 percent for A rated bonds rela�ve to 
all high quality bonds. 

 For the maturity ranges, there are 389 bonds with maturi�es in the first maturity range from 
zero through 1½ years maturity, 530 bonds in the second maturity range, 937 bonds in the third, 650 
bonds in the fourth, and 1,225 bonds in the farthest maturity range from 15 through 30 years maturity. 
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These figures show that the HQM yield curve covers the high quality bond market with plenty of bonds 
of all three ra�ngs and in each maturity range. 

 Of the 3,731 bonds, 1,300 do not have end calls but almost twice as many 2,431 do have end 
calls. This shows the importance of end calls in current bond markets and confirms that they must be 
included to get accurate yield curves. As previously discussed, because the presence of the end call 
doesn’t affect bond price, the end-call bonds are treated as standard bonds and the end-call feature is 
ignored in es�ma�on. 

 The five spline coefficients on the constrained B-splines expressed as percentages are 5.07, 3.75, 
4.32, 5.81, and 5.46. The coefficients on the two credit variables are 14 basis points and 15 basis points. 
And the coefficient on the hump variable is -50 basis points. The hump coefficient shows a small hump 
effect, although the charts below show that there is no actual hump on this date and the hump effect 
blends with the discount func�on to provide a more accurate shape to the yield curve. 

 

The TNC Yield Curve on 08/30/2024 

 The TNC yield curve on 08/30/2024 was computed using 316 Treasury securi�es which include 
every Treasury note or bond coupon issue available for trade on that day with at least two payments s�ll 
to be made and maturity greater than a half year. Convergence in the computa�on was achieved just as 
smoothly as in the HQM yield curve with 4 itera�ons. 

 For the maturity ranges, there are 54 securi�es with maturi�es in the first maturity range, 69 
securi�es in the second maturity range, 95 securi�es in the third, 20 securi�es in the fourth, and 78 
securi�es in the farthest maturity range. Each maturity range has enough securi�es for a good es�mate 
of the yield curve. 

 The five spline coefficients on the constrained B-splines for the TNC yield curve expressed as 
percentages are 4.95, 2.96, 3.98, 3.65, and 5.03. Each spline coefficient is below the equivalent HQM 
spline coefficient. The coefficient on the hump variable is -2.93, indica�ng a strong hump effect that will 
be seen in the charts below. 
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 This chart shows the discount func�ons from the HQM and TNC yield curves for this date. Both 
discount func�ons start at unity at maturity zero, and because the spline coefficients are posi�ve for 
both yield curves, the discount func�ons decline con�nuously throughout their ranges. In the projec�on 
range at 30 years maturity and above, the decline is exponen�al. 

 The TNC discount func�on is above the HQM discount func�on, indica�ng that the market is 
willing to pay more at each maturity for a contract to receive $1 at that maturity with Treasury 
characteris�cs than with high quality corporate bond characteris�cs. The reason is that the Treasury 
contract is less risky because Treasuries have no default risk, in contrast to corporate bonds. 
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 This chart shows the forward rates derived from the discount func�ons in the previous chart. 

 The three spline constraints are visible in the chart: The second-deriva�ve constraint at maturity 
zero causes the forward rate to become linear at zero. The first-deriva�ve constraint at maturity 30 years 
causes the forward rate to flaten out and move smoothly into the long-term forward rate. 

 And the long-term forward rate constraint causes the forward rate at 30 years maturity to equal 
the average forward rate in the farthest maturity range from 15 to 30 years and to remain constant at 
that average throughout the projec�on range. 

 In this chart, the long-term forward rate for the HQM yield curve is 5.54 percent and the long-
term forward rate for TNC is 4.70 percent. 

 The chart shows that the forward rates have a hump around 10 to 20 years maturity. A hump like 
this is o�en seen in the forward rate, and it doesn’t necessarily imply that there will be a hump in the 
par or spot yield curves. 
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 This chart shows the HQM par yield curve for this date together with a scater diagram of the 
yields and maturi�es of the 3,738 securi�es that were used to es�mate the curve. Yields for AAA 
securi�es are red dots, blue for AA, and green for A. As expected, AAA yields are the lowest on average 
and A yields are highest. The yields in the scater diagram were calculated using the street conven�on 
formula Equa�on (4.7) in Chapter 4. 

 The scater diagram illustrates that there’s a lot of noise in corporate bond data. However, the 
yield curve manages to pick up the patern and run through the dots. 

 This yield curve doesn’t have a hump. Nevertheless, the hump variable picks up the flatening in 
the dots right a�er 20 years maturity and helps produce a more accurate yield curve than the splines 
alone. Therefore, even when there isn’t a hump, the hump variable can contribute to accuracy. 

 This yield curve is shown projected out 10 years through 40 years maturity. Full projec�ons go 
out through 100 years maturity. 
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 Analogous to the previous chart, this chart shows the TNC par yield curve for the end of August 
together with a scater diagram of the yields and maturi�es of the 316 securi�es used to es�mate the 
curve. The yields in the scater diagram were calculated using the Treasury conven�on formula Equa�on 
(4.8) in Chapter 4. 

 The yield curve is not expected to run through the yields. That is because this yield curve is for 
bonds selling at par, whereas many of the individual yields pertain to bonds that may be way off par. One 
reason why bonds can be selling far from par is that they’re old with coupon rates very different from 
current rates. Nevertheless, the par yield curve should track the shape of the market, and the TNC and 
TRC yield curves are accurate in doing this. 

 In addi�on, this yield curve has a significant hump derived from the hump variable, as was 
men�oned earlier in the chapter. This hump helps capture the hump in the scater diagram that is 
apparent in the chart. 
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 This chart brings the together the par yield curves in the previous two charts and includes the 
companion spot yield curves, with everything projected out through 100 years maturity. The spot yield 
curves include the effects of the regression variables, which here is the hump variable. 

 The spot yield curves are above the par yield curves at higher maturi�es. As expected, the HQM 
yield curves are above TNC. The projec�ons beyond 30 years maturity rise gently. 

  



86 
 

 
6.0 

HQM SPOT YIELD CURVES 
PERCENT, 08/30/2024 

 
6.0 

 
FORWARD 

5.5 5.5 
 

 

 
5.0 

SPOT  
DISCOUNT SPOT 

 

 
5.0 

 

 
4.5 4.5 

 

 
4.0 4.0 

 
 

3.5 
YEARS MATURITY 

0 10 20 30 40 50 60 70 80 90 100 

 
3.5 

HQM Spot Yield Curves and the Forward Rate 

Figure 16.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 This chart compares HQM spot rates with the forward rate. The forward rate is the same as in 
Figure 16.2, and the spot rate is the same as in Figure 16.5. The discount spot rate is defined in Chapter 
5, and it is the spot rate computed solely from the discount func�on ignoring the hump variable. 

 The two spot rates show that the hump variable creates a hump around the spot rate. 
Nevertheless, both spot rates converge as maturity rises, as was shown in Chapter 14. 

 The spot rates start out below the forward rate at 30 years maturity, then rise to converge to the 
fixed long-term forward rate. This was shown in Chapters 5 and 14. 

 Note that Chapter 5 also shows that the spot rates will eventually end up higher than the long-
term forward rate as maturity is extended out because the rates use different formulas for measurement 
even though they are actually the same: the spot rates are semiannually compounded and the forward 
rate is con�nuously compounded. 
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17. Addi�onal HQM and TNC Results 

 

 

 

 
 This chapter displays addi�onal charts for the nominal yield curves that supplement the charts in 
the previous chapter. These charts show differing effects of the hump variable. Also included are three 
historical charts. 
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 This chart shows another recent HQM par yield curve plus scater diagram for 02/16/2024, and 
can be compared to the HQM par yield curve in the previous chapter for 08/30/2024. The number of 
bonds in this chart is 3,465 plus 6 commercial paper rates. 

 In contrast to the previous chapter’s HQM yield curve, this HQM yield curve has a mild hump 
around 20 years maturity. The coefficient on the hump variable for this chart is -80 basis points, which is 
a big higher than the value -50 basis points already seen for the yield curve on 08/30/2024. The scater 
diagram shows a hump in yields that is picked up by the yield curve. 
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 This chart shows the TNC par yield curve plus scater diagram for 08/24/2020, which can be 
compared to the analogous yield curve in the previous chapter for 08/30/2024. The number of Treasury 
securi�es in this chart is 286. 

 This yield curve doesn’t have a hump, in contrast to the previous chapter’s TNC yield curve. The 
value of the coefficient on the hump variable is near zero in this yield curve, in contrast to the 
strong -2.92 value for 08/30/2024. So this yield curve shows that when there is no hump in the data, the 
XRM methodology assigns a zero to the hump coefficient. Nevertheless, the scater diagram in the chart 
shows that this yield curve tracks the patern of the market. 

 In this chart, the second spline coefficient is also zero, which effec�vely removes the second 
constrained B-spline from the yield curve. So it’s possible at �mes that the spline that fits the data best 
has one of the spline coefficients set to zero. 
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 This chart shows the history of the HQM yield curve spot rates for 10, 100, and 2 years maturity 
from the beginning of the HQM yield curve in 1984 to present. The blue shaded areas indicate periods of 
recession. 

 The chart suggests that the rates at the different maturi�es tend to bunch up near recessions. 
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 Analogous to the previous chart, this chart shows history for the TNC yield curve. Again the chart 
indicates that the spot rates bunch around recessions. 

 This chart indicates that the spot rate projected at 100 years maturity was very high around 
1980. The period around 1980 saw very high infla�on rates, leading some observers at the �me to worry 
that infla�on was out of control. The high 100-year spot rate shows that the market was very concerned 
and that high expecta�ons for long-term interest rates were embedded in the market. Therefore, the 
XRM projec�on methodology picked up the infla�on concerns at that �me. 
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 This chart compares the HQM and TNC spot rate at 10 years maturity over �me. 

 The chart shows that the two rates generally tracked each other. However, there were �mes, 
such as in the 2008 recession, when the spread between the two changed temporarily. 
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18. Selected TRC Results 

 

 

 

 
 Analogous to Chapter 16, this chapter presents selected results for the TRC real yield curve 
based on TIPS. Ini�ally, the results are for 08/30/2024 so they can be compared to Chapter 16. But 
another day 08/31/2020 is also presented, which is four years earlier and shows a very different market 
patern for TIPS illustra�ng how different TIPS trading can be at different �mes. 

 

The TRC Yield Curve on 08/30/2024 

 The TRC yield curve on 08/30/2024 was computed using 50 TIPS which include every Treasury 
real note or bond in the market on that day with at least two payments remaining and maturity greater 
than one half year. Convergence in the computa�on was achieved with 4 itera�ons. 

 For the maturity ranges, there are 5 bonds with maturi�es in the first maturity range, 7 bonds in 
the second maturity range, and 16, 7, and 15 bonds in the third, fourth, and fi�h maturity ranges. 

 The five spline coefficients on the constrained B-splines for this TRC yield curve on this date 
expressed as percentages are 3.75, 0.74, 1.56, 2.02, and 2.29. The hump variable coefficient is -1.35, 
indica�ng the presence of a hump. 
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The TRC Yield Curve on 08/31/2020 

 The TRC yield curve on 08/31/2020 was chosen to be different from the yield curve on 
08/30/2024 so as to illustrate poten�al differences in the TIPS market at different �mes. 

 Same as for 08/30/2024, the yield curve on 08/31/2020 was computed using 44 TIPS which 
include all the Treasury real notes and bonds in the market on that day with at least two payments 
remaining and maturity greater than one half year. Convergence in the computa�on was achieved with 5 
itera�ons. 

 For the maturity ranges, there are 3 bonds with maturi�es in the first maturity range, 5 bonds in 
the second maturity range, and 14, 11, and 11 bonds in the third, fourth, and fi�h maturity ranges. 

 However, the five spline coefficients for the 08/31/2020 TRC yield curve are different from the 
coefficients for the 08/30/2024 yield curve. For the former, the coefficients expressed as percentages 
are -1.25, -1.66, -1.41, -0.31, and 0.29. The first four are nega�ve, and charts below will show that the 
resul�ng yields are largely nega�ve. The hump variable coefficient is -2.47, indica�ng the presence of 
hump effects. 

 



95 
 

 
1.2 

 
1.0 

TRC DISCOUNT FUNCTIONS 
REAL DOLLARS 

08/31/2020 

 
1.2 

 
1.0 

 
0.8 0.8 

 
0.6 

 
0.4 

 

 
08/30/2024 

0.6 

 
0.4 

 
0.2 0.2 

YEARS MATURITY 
0 0 

0 10 20 30 40 50 60 70 80 90 100 

Discount Func�ons 

Figure 18.1 

 

 

 

 

 

 

 

 

 

 

 

 

 This chart shows the discount func�ons for the two TRC TIPS yield curves. Both func�ons start at 
unity and are posi�ve throughout. 

 Because the spline coefficients are posi�ve, the 08/30/2024 discount func�on declines 
throughout its range. It declines exponen�ally in the projec�on range and has an asymptote at zero. 

 In contrast, the nega�ve spline coefficients for the 08/31/2020 yield curve cause the discount 
func�on to be above unity way into the projec�on range. So the market is willing to pay more than $1 in 
real terms to get $1 in the future. As shown in Chapter 5, this implies that the discount spot rate is 
nega�ve. And, in addi�on, this discount func�on rises at the beginning, which implies a nega�ve forward 
rate. 
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 This chart shows the forward rates from the discount func�ons in the previous chart. 

 As expected, the forward rate for the 08/30/2024 yield curve is posi�ve throughout because the 
spline coefficients are posi�ve. 

 In contrast, the 08/31/2020 forward rate is nega�ve un�l around 15 years maturity 
corresponding to the period when the discount rate is rising. Nevertheless, even when the discount rate 
remains above unity, it s�ll starts to decline at around 15 years maturity, which causes the forward rate 
to become posi�ve. Note that when the forward rate ini�ally turns posi�ve, the discount spot rate is s�ll 
nega�ve. 

 The long-term forward rate for the 08/30/2024 yield curve is 2.23 percent and the long-term 
forward rate for the 08/31/2020 yield curve is 0.14 percent. Note for the later that the fact that the 
forward rate is posi�ve at higher maturi�es results in a posi�ve long-term forward rate despite nega�ve 
forward rates at earlier maturi�es. 
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 This chart shows the TRC par yield curve and associated scater diagram for 08/30/2024. 

 As expected, because the spline coefficients are posi�ve, the par yield curve is posi�ve too. The 
yield curve has a hump as indicated by the hump coefficient. Similar to the TNC yield curves, this par 
yield curve tracks the patern of bond yields in the market. 
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 This chart shows the TRC par yield curve for 08/31/2020 and the associate scater diagram of 
yields. 

 This par yield curve is nega�ve throughout. However, such a par yield curve cannot actually exist 
in the market and there cannot actually be any bond trading at par because the nega�vity implies that 
the coupon rate on such a bond would have to be nega�ve, and all coupon rates on TIPS are set to be 
posi�ve. So this par yield curve should be used as an indicator of market condi�ons rather than an 
opportunity for trading. And, similar to the previous chart, even though the par yield curve is nega�ve, it 
s�ll captures the shape of the individual yields in the market and so it proves to be a useful indicator. 

 To note, the scater diagram yields are computed using the Treasury conven�on yield formula 
applied to the actual bonds in the market. Yields on the scater diagram are nega�ve because these 
bonds are trading away from par. 

 The nega�ve hump variable coefficient of -2.47 would suggest that there might be a hump. 
However, there is no hump. So in this chart, similar to the TNC yield curve for 08/30/2024, the hump 
variable flatens out the par yield curve a�er 20 years maturity and enables a more precise fit to the 
market without actually producing a hump. 
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 This chart shows the TBI curve for 08/30/2024 along with the TNC and TRC spot yield curves 
from which it is derived. 

 The TBI rate is around 2.0 percent through about 15 years maturity. A�er that the rate rises a bit 
but is s�ll below 2.5 percent 
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19. Conclusion 

 

 

 

 
 This monograph has described the XRM methodology for construc�ng yield curves using 
extended regressions on maturity ranges, including techniques for represen�ng the market behavior of 
forward rates in the maturity ranges by a cubic spline. The spline is constructed so that it calculates a 
fixed long-term forward rate that can generate yield curve projec�ons at long maturi�es.  

 The XRM also has regression variables, and the use of regression variables was also explained. 
The hump variable that is used to account for yields around 20 years maturity was described. And credit 
variables were created for the HQM yield curve to combine bonds in the three top quali�es AAA, AA, 
and A into a single yield curve. 

 The XRM methodology was applied to create three yield curves: the HQM yield curve for high 
quality corporate bonds as mandated by the Pension Protec�on Act of 2006, and the TNC and TRC yield 
curves for nominal Treasury coupon issues and TIPS. 

 The descrip�on of the XRM methodology and the results for the three yield curves show that 
XRM can be effec�vely applied to high quality corporate and Treasury fixed income securi�es to derive 
accurate es�mates of yield curves and related informa�on. Therefore, the XRM methodology is a general 
approach for fixed income markets. 
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